Abstract:
Systems and methods of a personal daemon, executing as a background process on a mobile computing device, for providing personal assistant to an associated user is presented. While the personal daemon maintains personal information corresponding to the associated user, the personal daemon is configured to not share the personal information of the associated user with any other entity other than the associated user except under conditions of rules established by the associated user. The personal daemon monitors and analyzes the actions of the associated user to determine additional personal information of the associated user. Additionally, upon receiving one or more notices of events from a plurality of sensors associated with the mobile computing device, the personal daemon executes a personal assistance action on behalf of the associated user.
Abstract:
Systems and methods of a personal daemon, executing as a background process on a mobile computing device, for providing personal assistant to an associated user is presented. While the personal daemon maintains personal information corresponding to the associated user, the personal daemon is configured to not share the personal information of the associated user with any other entity other than the associated user except under conditions of rules established by the associated user. The personal daemon monitors and analyzes the actions of the associated user to determine additional personal information of the associated user. Additionally, upon receiving one or more notices of events from a plurality of sensors associated with the mobile computing device, the personal daemon executes a personal assistance action on behalf of the associated user.
Abstract:
A tele-immersive environment is described that provides interaction among participants of a tele-immersive session. The environment includes two or more set-ups, each associated with a participant. Each set-up, in turn, includes mirror functionality for presenting a three-dimensional virtual space for viewing by a local participant. The virtual space shows at least some of the participants as if the participants were physically present at a same location and looking into a mirror. The mirror functionality can be implemented as a combination of a semi-transparent mirror and a display device, or just a display device acting alone. According to another feature, the environment may present a virtual object in a manner that allows any of the participants of the tele-immersive session to interact with the virtual object.
Abstract:
Technologies pertaining to provision of customized audio to each listener in a plurality of listeners are described herein. A sensor outputs data that is indicative of locations of multiple listeners in an environment. The data is processed to determine locations and orientations of the respective heads of the multiple listener in the environment. Based on the locations and orientations of heads of the listeners in the environment, for each listener, respective customized audio signals are generated. The customized audio signals are transmitted to respective beamforming transducers. The beamforming transducers directionally output customized beams for the first listener and the second listener based upon the customized audio signals and locations of the heads of the listeners.
Abstract:
An interaction management module (IMM) is described for allowing users to engage an interactive surface in a collaborative environment using various input devices, such as keyboard-type devices and mouse-type devices. The IMM displays digital objects on the interactive surface that are associated with the devices in various ways. The digital objects can include input display interfaces, cursors, soft-key input mechanisms, and so on. Further, the IMM provides a mechanism for establishing a frame of reference for governing the placement of each cursor on the interactive surface. Further, the IMM provides a mechanism for allowing users to make a digital copy of a physical article placed on the interactive surface. The IMM also provides a mechanism which duplicates actions taken on the digital copy with respect to the physical article, and vice versa.
Abstract:
Pen and computing device sensor correlation technique embodiments correlate sensor signals received from various grips on a touch-sensitive pen and touches to a touch-sensitive computing device in order to determine the context of such grips and touches and to issue context-appropriate commands to the touch-sensitive pen or the touch-sensitive computing device. A combination of concurrent sensor inputs received from both a touch-sensitive pen and a touch-sensitive computing device are correlated. How the touch-sensitive pen and the touch-sensitive computing device are touched or gripped are used to determine the context of their use and the user's intent. A context-appropriate user interface action based can then be initiated. Also the context can be used to label metadata.
Abstract:
Technologies pertaining to provision of customized audio to each listener in a plurality of listeners are described herein. A sensor outputs data that is indicative of locations of multiple listeners in an environment. The data is processed to determine locations and orientations of the respective heads of the multiple listener in the environment. Based on the locations and orientations of heads of the listeners in the environment, for each listener, respective customized audio signals are generated. The customized audio signals are transmitted to respective beamforming transducers. The beamforming transducers directionally output customized beams for the first listener and the second listener based upon the customized audio signals and locations of the heads of the listeners.
Abstract:
Technologies pertaining to improving an auditory experience of a listener are described. Audio is modified based upon noise generated by noise sources in an environment. A microphone generates a signal that is representative of noise in the environment, and the signal is processed to identify peak frequencies therein. When a key frequency of the audio is proximate to a peak frequency in the noise, the audio is modified to improve the listener's perception of the audio.
Abstract:
The cross-modal sensor fusion technique described herein tracks mobile devices and the users carrying them. The technique matches motion features from sensors on a mobile device to image motion features obtained from images of the device. For example, the acceleration of a mobile device, as measured by an onboard internal measurement unit, is compared to similar acceleration observed in the color and depth images of a depth camera. The technique does not require a model of the appearance of either the user or the device, nor in many cases a direct line of sight to the device. The technique can operate in real time and can be applied to a wide variety of ubiquitous computing scenarios.
Abstract:
A “Concurrent Projector-Camera” uses an image projection device in combination with one or more cameras to enable various techniques that provide visually flicker-free projection of images or video, while real-time image or video capture is occurring in that same space. The Concurrent Projector-Camera provides this projection in a manner that eliminates video feedback into the real-time image or video capture. More specifically, the Concurrent Projector-Camera dynamically synchronizes a combination of projector lighting (or light-control points) on-state temporal compression in combination with on-state temporal shifting during each image frame projection to open a “capture time slot” for image capture during which no image is being projected. This capture time slot represents a tradeoff between image capture time and decreased brightness of the projected image. Examples of image projection devices include LED-LCD based projection devices, DLP-based projection devices using LED or laser illumination in combination with micromirror arrays, etc.