Abstract:
A non-transitory computer readable medium storing instructions which, when executed by a processor of an electronic device that includes a touch sensitive and pressure sensitive display, cause the processor to enable a user interface of the electronic device, by which a glide gesture along the display and an amount of pressure applied to the display both generate the same user interface command.
Abstract:
A method of updating reference values for optical components of a light-based touch screen, including providing a display, a plurality of light emitters that sequentially transmit light over the display, and a plurality of light receivers that receive the emitted light and that output values representing the amount of light received, activating a sequence of emitter-receiver pairs, when an object touches the screen, identifying those emitter-receiver pairs (E, R) for which the light emitted by the emitter E is not blocked from reaching the receiver R of the pair, based on a comparison of the actual output value, OUT(E, R), of the receiver R, with a reference output value, REF(E, R), for the emitter-receiver pair, and setting REF(E, R)=OUT(E, R) for each of the thus-identified emitter-receiver pairs (E, R).
Abstract:
A sensor for a control panel, including a housing along an edge of the panel, light emitters projecting light along an in-air detection plane over the panel and detectors detecting reflections of the projected light, reflected by an object in the detection plane, lenses oriented such that each detector receives maximum light intensity when light enters a corresponding lens at a particular angle, whereby for each emitter-detector pair, when the object is located at a specific position in the detection plane, light emitted by the emitter of that pair is reflected by the object back through one of the lenses at the particular angle to the detector of that pair, the specific position being associated with that emitter-detector pair, and a processor configured to determine panel locations, map each location to a position in the detection plane associated with an emitter-detector pair, mapping the panel to the detection plane.
Abstract:
Method including providing a sensor including light emitters, photodiode detectors, and lenses arranged so as to direct light beams from light emitters exiting lenses along a detection plane, and so as to direct light beams entering lenses at a specific angle of incidence onto photodiode detectors, mounting the sensor on a display presenting virtual input controls for an electronic device, such that the detection plane resides in an airspace in front of the display, activating light emitters to project light beams through lenses along the detection plane, wherein at least one of the light beams is interrupted by a finger, detecting light reflected by the finger, identifying emitters that projected the light beam that was reflected and photodiode detectors that detected the reflected light, as emitter-detector pairs, calculating display coordinates based on target positions associated with the identified emitter-detector pairs, and transmitting the calculated display coordinates to the electronic device.
Abstract:
A state machine for controlling a sensor including a chip package coupled with photo-emitters and photo-detectors mounted in a device, and with a host processor, including an emitter driver, a detector driver, a signal processor for generating signals representing amounts of light detected by the detectors, and a scan controller for controlling the emitter and detector drivers to activate an automated sequence of emitter-detector pairs, the scan controller including registers for storing parameters designating emitter-detector pairs that are to be activated during the automated sequence, and for storing the signals generated by the signal processor for the emitter-detector pair activations, and at least one input/output pin for receiving parameters from the host processor to be loaded into the registers, and for outputting the stored signals in the registers to the host processor, for the host processor to identify therefrom location coordinates of an object near or touching the device.
Abstract:
A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
Abstract:
A proximity sensor including a housing, a plurality of light pulse emitters for projecting light out of the housing along a detection plane, a plurality of primary light detectors for detecting reflections of the light projected by the emitters, by a reflective object in the detection plane, a plurality of primary lenses oriented relative to the emitters and primary detectors in such a manner that for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the primary lenses and is reflected by the object back through one of the primary lenses to the detector of that pair when the object is located at a position, from among a primary set of positions in the detection plane, that position being associated with that emitter-detector pair, and a processor for co-activating emitter-detector pairs, and configured to calculate a location of the object in the detection plane.
Abstract:
A user input device, including a user input area, light emitters arranged along a first edge of the input area so as to be evenly spaced, light receivers arranged along a second edge of the input area, a curved lens arranged in front of the emitters, such that light emitted by each of the emitters is refracted as it enters the curved lens, and is again refracted as it exits the curved lens, resulting in unevenly spaced collimated light exiting the curved lens and crossing the input area, the collimated light being shifted laterally by a non-zero offset along a direction parallel to the first edge, the offset being a characteristic of the arrangement of that emitter vis-à-vis the curved lens, and a calculating unit for determining location of an object inserted into the input area from outputs of the receivers, based on the characteristic offsets of the emitters.
Abstract:
A controller for a light-based touch screen including a chip package coupled with a light-based touch screen, emitter driver circuitry inside the chip package for selectively activating a plurality of photoemitters that are outside of the chip package, detector driver circuitry inside the chip package for selectively activating a plurality of photo detectors that are outside of the chip package, detector signal processing circuitry for generating detection signals representing measured amounts of light detected on the plurality of photo detectors, a first plurality of signal conducting pins for connecting the plurality of photoemitters outside the chip package to the emitter driver circuitry inside the chip package, a second plurality of signal conducting pins for connecting the plurality of photo detectors outside the chip package to the detector driver circuitry and to the detector signal processing circuitry inside the chip package, controller circuitry inside the chip package for controlling the emitter driver circuitry and the detector driver circuitry, and at least one input/output pin for communicating with a host processor and for outputting the detection signals generated by the detector signal processing circuitry to the host processor, for the host processor to identify one or more locations on the touch screen that are being touched.
Abstract:
A touch screen, including a layer of light-transmissive material having an upper surface that is exposed for touch by one or more objects, a plurality of light emitters underneath the upper surface, a first lens assembly for directing light beams emitted by the light emitters into the layer at an angle such that the light beams, when entering the layer, remain confined to the layer by total internal reflection when the light beams are not absorbed by any of the objects touching the upper surface, a plurality of light detectors for detecting light beams and for generating outputs indicating the amounts of light detected, a second lens assembly for directing light beams at a surface of the layer towards the light detectors, and a calculating unit for determining respective one or more locations of the one or more objects touching the upper surface, based on outputs of the light detectors.