Abstract:
A proximity sensor including a housing, a plurality of light pulse emitters for projecting light out of the housing along a detection plane, a plurality of primary light detectors for detecting reflections of the light projected by the emitters, by a reflective object in the detection plane, a plurality of primary lenses oriented relative to the emitters and primary detectors in such a manner that for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the primary lenses and is reflected by the object back through one of the primary lenses to the detector of that pair when the object is located at a position, from among a primary set of positions in the detection plane, that position being associated with that emitter-detector pair, and a processor for co-activating emitter-detector pairs, and configured to calculate a location of the object in the detection plane.
Abstract:
A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
Abstract:
A lens for placement opposite a diode in an optical touch sensor, including an upper portion including an upper refractive surface located nearer to the diode, and an upper reflector located further from the diode, the upper reflector being curved in two dimensions and cut horizontally by a top horizontal plane of the lens, and a lower portion, coplanar with the diode, including a lower refractive surface located nearer to the diode, and a lower reflector located further from the diode, the lower reflector being curved in the two dimensions and cut horizontally by a bottom horizontal plane of the lens, wherein the upper and the lower reflector are symmetrical and vertically aligned, and wherein non-collimated light reflected by the lower reflector onto the upper reflector is partially collimated in the two dimensions by the lower reflector and further collimated in the two dimensions by the upper reflector.
Abstract:
A door handle including light emitters for emitting light out of the handle, light detectors, lenses oriented relative to the emitters and detectors such that for each emitter-detector pair, when a reflective object is located at a target position near the handle, corresponding to that emitter-detector pair, then the light emitted by that emitter passes through one of the lenses and is reflected by the object back through one of the lenses to that detector, a keyless lock that, when activated, scans for a digital key via wireless communication, and a processor operable to synchronously activate emitter-detector pairs, to recognize from the amounts of light received by the activated detectors, and from the target positions corresponding to the activated emitter-detector pairs, that the object is approaching the handle and performing a sweep gesture and, in response thereto, to activate the keyless lock.
Abstract:
A lens for placement opposite a diode in an optical touch sensor, including an upper portion including an upper refractive surface located nearer to the diode, and an upper reflector located further from the diode, the upper reflector being curved in two dimensions and cut horizontally by a top horizontal plane of the lens, and a lower portion, coplanar with the diode, including a lower refractive surface located nearer to the diode, and a lower reflector located further from the diode, the lower reflector being curved in the two dimensions and cut horizontally by a bottom horizontal plane of the lens, wherein the upper and the lower reflector are symmetrical and vertically aligned, and wherein non-collimated light reflected by the lower reflector onto the upper reflector is partially collimated in the two dimensions by the lower reflector and further collimated in the two dimensions by the upper reflector.
Abstract:
A proximity sensor including a housing, a plurality of light pulse emitters for projecting light out of the housing along a detection plane, a plurality of primary light detectors for detecting reflections of the light projected by the emitters, by a reflective object in the detection plane, a plurality of primary lenses oriented relative to the emitters and primary detectors in such a manner that for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the primary lenses and is reflected by the object back through one of the primary lenses to the detector of that pair when the object is located at a position, from among a primary set of positions in the detection plane, that position being associated with that emitter-detector pair, and a processor for co-activating emitter-detector pairs, and configured to calculate a location of the object in the detection plane.
Abstract:
A lens for placement opposite a diode in an optical touch sensor, including an upper portion including an upper refractive surface located nearer to the diode, and an upper reflector located further from the diode, the upper reflector being curved in two dimensions and cut horizontally by a top horizontal plane of the lens, and a lower portion, coplanar with the diode, including a lower refractive surface located nearer to the diode, and a lower reflector located further from the diode, the lower reflector being curved in the two dimensions and cut horizontally by a bottom horizontal plane of the lens, wherein the upper and the lower reflector are symmetrical and vertically aligned, and wherein non-collimated light reflected by the lower reflector onto the upper reflector is partially collimated in the two dimensions by the lower reflector and further collimated in the two dimensions by the upper reflector.