Abstract:
In various embodiments, a lighting device is provided. The lighting device includes a channel-shaped elongate profiled body having a central or web portion and two side portions sidewise of the web portion, a profiled body having mutually opposed undercuts opening inwardly of the channel shape of profiled body, and a light radiation source assembly including an elongate support board carrying one or more light radiation sources, e.g. LED sources, the support board having longitudinal sides extending into the said undercuts, wherein the light radiation source assembly is retained by the channel-shaped profiled body.
Abstract:
According to the present disclosure, lighting sources having operating parameter(s), which is controllable in lighting sequence(s) as a function of a time code data set coupled with the sequence, are controlled: by providing a repository of operating data files for the sources, coupled with the lighting sources, with each data file including time code data set(s) for lighting sequence(s) for one of the lighting sources, by coupling with the data files respective audio and/or video data deliverable in a delivery stream, by retrieving in the data repository operating data file(s) coupled with a selected one of the lighting sources, and at certain instants during delivery of the audio and/or video data, activating the selected lighting source by controlling the operating parameter(s) as a function of the operating data included in the operating data file retrieved.
Abstract:
A device for mounting lighting sources on a substrate includes a channel-like mounting frame provided with fixing formations for fixing on said substrate, said mounting frame defining a cavity for receiving said lighting source with said lighting source resting on said substrate, a slider member which can be positioned in said cavity of said mounting frame to urge said lighting source toward said substrate; said slider member being slidable with respect to said mounting frame between an insertion position and a locking position, wherein said mounting frame and said slider member bear complementary engagement formations cooperating in a ramp-like manner to force said slider member and the lighting source urged thereby toward said substrate when said slider member is advanced from said insertion position toward said locking position.
Abstract:
A lighting device may include a channel-shaped elongated profiled body including a light permeable material and having a mouth portion, and a light radiation source assembly arranged at the mouth portion and including a support board having one or more electrically powered light radiation sources, e.g. LED light radiation sources, thereon facing profiled body. Mouth portion of profiled body includes shoulder formations arranged sidewise of said mouth portion, with support board abutting against said shoulder formations.
Abstract:
In various embodiments, a lighting device is provided. The lighting device includes a channel-shaped elongate profiled body having a central or web portion and two side portions sidewise of the web portion, a profiled body having mutually opposed undercuts opening inwardly of the channel shape of profiled body, and a light radiation source assembly including an elongate support board carrying one or more light radiation sources, e.g. LED sources, the support board having longitudinal sides extending into the said undercuts, wherein the light radiation source assembly is retained by the channel-shaped profiled body.
Abstract:
A lighting device may include a channel-shaped elongated profiled body including a light permeable material and having a mouth portion, and a light radiation source assembly arranged at the mouth portion and including a support board having one or more electrically powered light radiation sources, e.g. LED light radiation sources, thereon facing profiled body.Mouth portion of profiled body includes shoulder formations arranged sidewise of said mouth portion, with support board abutting against said shoulder formations.
Abstract:
A method of placing on a mounting substrate light radiation sources arranged in successive sequences wherein each sequence includes light radiation sources from different bins having respective light emission characteristics and wherein the sequential order of recurrence of the light radiation sources of the various bins is repeated over the sequences, may include placing the light radiation sources on the mounting substrate in at least two juxtaposed rows, wherein each row includes light radiation sources arranged in a zigzag pattern to produce an chessboard-like array of light radiation sources.
Abstract:
A lighting module includes a power line for receiving a power supply current and a ground line, a segmentation point for cutting the lighting module into two parts, a first set of light sources upstream of the segmentation point, a second set of light sources downstream of the segmentation point, wherein the first and second sets of light sources are connected in series, and a resistive element connected to the intermediate point between the first and the second set of light sources, and the ground line, which is configured in such a way that: when the lighting module has not been cut, the resistive element has a resistance which is greater than the resistance of the portion of the lighting module downstream of the segmentation point, and when the lighting module has been cut, the resistive element has a resistance which is less than the resistance thereof.
Abstract:
A method for passing an electrical cable through a hole in a housing of a unit of electrical equipment is provided. The method may include: fitting onto the cable a tubular, mushroom-shaped male member comprising a stem with a threaded portion and a portion with enlarged head; inserting into the hole the cable having the male member fitted thereon extending through said hole with said portion with enlarged head abutting against the periphery of the hole externally to the housing and said threaded portion protruding inside the housing; and retaining said male member in the hole by coupling with said threaded portion that protrudes inside the housing an annular female member in the form of a nut co-operating with the periphery of the hole inside said housing to counter the movement of the female member with respect to the housing.
Abstract:
A lighting apparatus includes a light-radiation generator configured to project a lighting beam towards a lighting space including at least one undesired lighting zone; a motorization of the light-radiation generator configured to move the lighting beam, the motorization of the light-radiation generator being controllable as a function of scanning-control signals received at the lighting apparatus; driving circuitry of the light-radiation generator configured to control emission of the lighting beam; processing circuitry configured to detect scanning-control signals received at the lighting apparatus and a scanning position of the lighting beam of the light-radiation generator, the processing circuitry being configured to control the lighting beam to be brought into said at least one undesired lighting zone; and memory circuitry configured to store therein at least one pair of boundary values of said at least one undesired lighting zone of said lighting space.