Abstract:
Devices and methods are provided for drug delivery. The device may include a housing configured for intraluminal deployment into a human or animal subject and first and second reservoirs within the housing, each reservoir having an actuation end, an opposed release end, and a plug moveable from the actuation end toward the release end. First and second drug formulations may be contained in the first and second reservoirs, respectively. The device may also include one or more actuation systems configured to drive the first and second plugs so as to drive the first and second drug formulations from the first and second reservoirs. The housing may include a porous membrane sidewall in fluid communication with the release ends of the first and second reservoirs, the porous membrane sidewall being configured to distribute the first and second drug formulations driven from the first and second reservoirs.
Abstract:
Devices and methods are provided for drug delivery. The device may include a housing configured for intraluminal deployment into a human or animal subject and first and second reservoirs within the housing, each reservoir having an actuation end, an opposed release end, and a plug moveable from the actuation end toward the release end. First and second drug formulations may be contained in the first and second reservoirs, respectively. The device may also include one or more actuation systems configured to drive the first and second plugs so as to drive the first and second drug formulations from the first and second reservoirs. The housing may include a porous membrane sidewall in fluid communication with the release ends of the first and second reservoirs, the porous membrane sidewall being configured to distribute the first and second drug formulations driven from the first and second reservoirs.
Abstract:
A dampening fluid useful in offset ink printing applications contains water and a surfactant whose structure can be altered. The alteration in structure aids in reducing accumulation of the surfactant on the surface of an imaging member. The surfactant can be decomposed, switched between cis-trans states, or polymerizable with ink that is subsequently placed on the surface.
Abstract:
Retention devices and methods are provided for drug delivery. The device may include a housing configured for intraluminal deployment into a human or animal subject and at least one reservoir contained within the housing. The at least one reservoir may have an actuation end and a release end and contain at least one drug formulation. A plug may be contained within the at least one reservoir and be moveable from the actuation end toward the release end. The device may also include an actuation system operably connected to the actuation end of the at least one reservoir and configured to drive the at least one drug formulation from the reservoir. The device may also include at least one retention member affixed to the housing and movable between a non-stressed position, a deployment position, and a retention position for retaining the device in an intraluminal location in the subject.
Abstract:
Retention devices and methods are provided for drug delivery. The device may include a housing configured for intraluminal deployment into a human or animal subject and at least one reservoir contained within the housing. The at least one reservoir may have an actuation end and a release end and contain at least one drug formulation. A plug may be contained within the at least one reservoir and be moveable from the actuation end toward the release end. The device may also include an actuation system operably connected to the actuation end of the at least one reservoir and configured to drive the at least one drug formulation from the reservoir. The device may also include at least one retention member affixed to the housing and movable between a non-stressed position, a deployment position, and a retention position for retaining the device in an intraluminal location in the subject.
Abstract:
A method and system for measurement of ground based vehicle speed includes a movable platform that includes an unmanned aerial vehicle (UAV) located in proximity to a roadway, the UAV operates under control and navigation of a UAV control unit, and the UAV also carries camera and monitoring equipment, the camera and monitoring equipment including an onboard computing system, and a camera with a wide angle lens and a camera with a telephoto lens, the cameras being mounted on a pan/tilt device. An algorithm operated by the on-board computing system is used to detect and track vehicles moving on a roadway. The algorithm is configured to detect and track the vehicles despite motion created by movement of the UAV. The cameras mounted on the pan/tilt device are moved under the direction of the computer vision algorithm to maintain a target vehicle of the detected moving vehicles in view, and the speed of the target vehicle is measured.