Abstract:
Embodiments of a hybrid fan and active heat pumping system are disclosed. In some embodiments, the hybrid fan and active heat pumping system comprises a fan assembly and an active heat pumping system comprises a heat pump. The active heat pumping system is integrated with the fan assembly and is operable to actively cool or heat air as the air passes through the fan assembly. In some embodiments, the heat pump comprised in the active heat pumping system is a solid-state heat pump, a vapor compression heat pump, or a Stirling Cycle heat pump.
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).
Abstract:
A thermoelectric heat exchanger component includes a circuit board and multiple thermoelectric devices attached to the circuit board. Heights of at least two of the thermoelectric devices are different due to, for example, tolerances in a manufacturing process for the thermoelectric devices. The thermoelectric heat exchanger component also includes a first heat spreading lid over a first surface of the thermoelectric devices and a second heat spreading lid over a second surface of the thermoelectric devices. A thermal interface material is present between each one of the thermoelectric devices and the first and second heat spreading lids. The first heat spreading lid and the second heat spreading lid are oriented such that the thickness of the thermal interface material, and thus a thermal interface resistance, is optimized for the thermoelectric devices.
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).
Abstract:
Embodiments of a thermoelectric heat exchanger component having a heat spreading lid that optimizes thermal interface resistance between the heat spreading lid and multiple thermoelectric devices and methods of fabrication thereof are disclosed. In one embodiment, a thermoelectric heat exchanger component includes a circuit board and multiple thermoelectric devices attached to the circuit board. Heights of at least two of the thermoelectric devices are different due to, for example, tolerances in a manufacturing process for the thermoelectric devices. The thermoelectric heat exchanger component also includes a heat spreading lid over the thermoelectric devices and a thermal interface material between the thermoelectric devices and the heat spreading lid. An orientation (i.e., a tilt) of the heat spreading lid is such that a thickness of the thermal interface material, and thus a thermal interface resistance, is optimized for the thermoelectric devices.
Abstract:
Systems and methods for mitigating heat rejection limitations of a thermoelectric module are disclosed. In some embodiments, a method of operating a thermoelectric module includes providing a first amount of power to the thermoelectric module and determining that a temperature of a hot side of the thermoelectric module is above a first threshold. The method also includes, in response to determining that the temperature of the hot side is above the first threshold, providing a second amount of power to the thermoelectric module that is less than the first amount of power. The method also includes determining that the temperature of the hot side of the thermoelectric module is below a second threshold and providing a third amount of power to the thermoelectric module. In some embodiments, this mitigates heat rejection limitations of the thermoelectric module, especially when the hot side of the thermoelectric module is passively cooled.
Abstract:
A heat pump includes a SAS structure with a wall defining a first open side and a second open side. The heat pump also includes an interconnect board, enclosed within the SAS structure including openings. Thermoelectric modules are mounted on the interconnect board at the locations defined by the openings. The heat pump additionally includes a hot-side heat spreader that is in thermal contact with the first side of each thermoelectric module and a cold-side heat spreader that is in thermal contact with the second side of each thermoelectric module. The periphery of the hot-side heat spreader mechanically contacts the wall of the SAS structure at the first open side, and the periphery of the cold-side heat spreader mechanically contacts the wall of the SAS structure at the second open side such that any compression force applied to the heat pump is absorbed by the SAS structure.
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).