Abstract:
Embodiments of a hybrid fan and active heat pumping system are disclosed. In some embodiments, the hybrid fan and active heat pumping system comprises a fan assembly and an active heat pumping system comprises a heat pump. The active heat pumping system is integrated with the fan assembly and is operable to actively cool or heat air as the air passes through the fan assembly. In some embodiments, the heat pump comprised in the active heat pumping system is a solid-state heat pump, a vapor compression heat pump, or a Stirling Cycle heat pump.
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).
Abstract:
Embodiments of a hybrid fan and active heat pumping system are disclosed. In some embodiments, the hybrid fan and active heat pumping system comprises a fan assembly and an active heat pumping system comprises a heat pump. The active heat pumping system is integrated with the fan assembly and is operable to actively cool or heat air as the air passes through the fan assembly. In some embodiments, the heat pump comprised in the active heat pumping system is a solid-state heat pump, a vapor compression heat pump, or a Stirling Cycle heat pump.
Abstract:
A thermoelectric refrigeration system includes a heat exchanger that includes a cold side heat sink and a hot side heat sink. The thermoelectric refrigeration system also includes a heat exchange loop coupled to one of the cold side heat sink and the hot side heat sink, the heat exchange loop operating according to thermosiphon principles to provide passive two-phase transport of a working fluid through the heat exchange loop. The thermoelectric refrigeration system also includes thermal insulation that thermally insulates the heat exchanger from a cooling chamber of the thermoelectric refrigeration system or an environment that is external to the thermoelectric refrigeration system.
Abstract:
A thermoelectric system includes a cooling chamber and a thermoelectric heat exchange system. The thermoelectric heat exchange system includes a hot side heat sink, a cold side heat sink that is physically separated from the hot side heat sink, and a heat conduit that thermally couples the hot side heat sink and the cold side heat sink.
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).
Abstract:
Systems and methods for mitigating heat rejection limitations of a thermoelectric module are disclosed. In some embodiments, a method of operating a thermoelectric module includes providing a first amount of power to the thermoelectric module and determining that a temperature of a hot side of the thermoelectric module is above a first threshold. The method also includes, in response to determining that the temperature of the hot side is above the first threshold, providing a second amount of power to the thermoelectric module that is less than the first amount of power. The method also includes determining that the temperature of the hot side of the thermoelectric module is below a second threshold and providing a third amount of power to the thermoelectric module. In some embodiments, this mitigates heat rejection limitations of the thermoelectric module, especially when the hot side of the thermoelectric module is passively cooled.
Abstract:
Embodiments of the present disclosure relate to controlling multiple Thermoelectric Coolers (TECs) to maintain a set point temperature of a chamber. In one embodiment, a controller receives temperature data corresponding to a temperature of the chamber. Based on the temperature data, the controller selectively controls two or more subsets of the TECs to maintain the temperature of the chamber at a desired set point temperature. In this manner, the controller is enabled to control the TECs such that the TECs operate to efficiently maintain the temperature of the chamber at the set point temperature. In another embodiment, the controller selects one or more control schemes enabled by the controller based on temperature data and a desired performance profile. The controller then independently controls one or more subsets of the TECs according to the selected control scheme(s).