Abstract:
Tools and techniques for biochar method, systems, devices, and products are provided in accordance with various embodiments. For example, methods are provided in accordance with various embodiments that may include rubbing one or more objects with biochar. Rubbing the one or more objects with biochar may include: polishing one or more objects utilizing biochar; cleaning one or more objects utilizing biochar; grinding one or more objects utilizing biochar; scratching one or more objects utilizing biochar; and/or abrading one or more objects utilizing biochar. In some embodiments, polishing the one or more objects utilizing the biochar includes: combining water, the biochar, and the one or more objects; and/or tumbling the combined water, biochar, and one or more objects. The one or more objects may include one or more stones. The tumbling may occur for 72 hours or less. The tumbling may occur as a single step.
Abstract:
Tools and techniques for biochar production and biochar products are provided in accordance with various embodiments. For example, some embodiments include a method of biochar production that may include introducing a compound that includes at least carbon, oxygen, and hydrogen into a reaction chamber. The compound may be heated to a temperature of at least 1,000 degrees Celsius in the reaction chamber such that the compound reacts through a pyrolysis reaction to produce biochar. The produced biochar may be collected and/or further processed in some cases. In some embodiments, the compound includes at least biomass or a waste product. In some embodiments, the temperature of the reaction chamber is at least 1,100 degrees Celsius. In some embodiments, the compound has a residence time in the reaction chamber between 10 seconds and 1,000 seconds to produce the biochar. Some embodiments include biochar that may include graphite or graphene.
Abstract:
Methods, systems, and devices for liquid hydrocarbon fuel production, hydrocarbon chemical production, and aerosol capture are provided. For example, a carbon-oxygen-hydrogen (C—O—H) compound may be heated to a temperature of at least 800 degrees Celsius such that the C—O—H compound reacts through a non-oxidation reaction to generate at least a hydrocarbon compound that may be at least a component of a liquid hydrocarbon fuel or a hydrocarbon chemical. The liquid hydrocarbon fuel may be a liquid when at a temperature of 20 degrees Celsius. The C—O—H compound may include biomass. In some cases, the hydrocarbon compound produced through the non-oxidation reaction includes a hydrocarbon aerosol form as the hydrocarbon compound at least as it is produced or cools. Some embodiments include aerosol capture methods, systems, and devices, which may include passing a hydrocarbon aerosol form through a material in a liquid phase in order to gather the aerosol material.
Abstract:
Methods, systems, and/or devices for synthesis gas recapture are provided, which may include methods, systems, and/or devices for filtering a synthesis gas stream. In some cases, tars, particulates, water, and/or heat may be removed from the synthesis gas stream through the filtering of the synthesis gas stream. The filtered synthesis gas stream may then be captured and/or utilized in a variety of different ways. Some embodiments utilizing a C—O—H compound to filter a synthesis gas stream. In some embodiments, the C—O—H compound utilized to filter the synthesis gas stream may be utilized to produce additional synthesis gas. The additional synthesis gas may be filtered by additional C—O—H compound.
Abstract:
Methods, systems, and devices for liquid hydrocarbon fuel production, hydrocarbon chemical production, and aerosol capture are provided. For example, a carbon-oxygen-hydrogen (C—O—H) compound may be heated to a temperature of at least 800 degrees Celsius such that the C—O—H compound reacts through a non-oxidation reaction to generate at least a hydrocarbon compound that may be at least a component of a liquid hydrocarbon fuel or a hydrocarbon chemical. The liquid hydrocarbon fuel may be a liquid when at a temperature of 20 degrees Celsius. The C—O—H compound may include biomass. In some cases, the hydrocarbon compound produced through the non-oxidation reaction includes a hydrocarbon aerosol form as the hydrocarbon compound at least as it is produced or cools. Some embodiments include aerosol capture methods, systems, and devices, which may include passing a hydrocarbon aerosol form through a material in a liquid phase in order to gather the aerosol material.
Abstract:
Methods are disclosed for generating electrical power from a compound comprising carbon, oxygen, and hydrogen. Water is combined with the compound to produce a wet form of the compound. The wet form of the compound is transferred into a reaction processing chamber. The wet form of the compound is heated within the reaction chamber such that elements of the compound dissociate and react, with one reaction product comprising hydrogen gas. The hydrogen gas is processed to generate electrical power.
Abstract:
Methods, systems, and devices for liquid hydrocarbon fuel production, hydrocarbon chemical production, and aerosol capture are provided. For example, a carbon-oxygen-hydrogen (C—O—H) compound may be heated to a temperature of at least 800 degrees Celsius such that the C—O—H compound reacts through a non-oxidation reaction to generate at least a hydrocarbon compound that may be at least a component of a liquid hydrocarbon fuel or a hydrocarbon chemical. The liquid hydrocarbon fuel may be a liquid when at a temperature of 20 degrees Celsius. The C—O—H compound may include biomass. In some cases, the hydrocarbon compound produced through the non-oxidation reaction includes a hydrocarbon aerosol form as the hydrocarbon compound at least as it is produced or cools. Some embodiments include aerosol capture methods, systems, and devices, which may include passing a hydrocarbon aerosol form through a material in a liquid phase in order to gather the aerosol material.
Abstract:
Methods, systems, and devices for continuous production of liquid fuels from biomass are provided. Some embodiments utilize a thermochemical process to produce a bio-oil in parallel with a thermochemical process to produce a hydrogen-rich synthesis gas. Both product streams may be fed into a third reaction chamber that may enrich the bio-oil with the hydrogen gas, for example, in a continuous production process. One product stream may include a liquid fuel such as diesel. Some embodiments may also produce other product streams including, but not limited to, electrical power generation and/or biochar.
Abstract:
Tools and techniques for pyroligneous acid production are provided in accordance with various embodiments. For example, a method of pyroligneous acid production is provided. The method may include: introducing a compound that includes at least carbon, oxygen, and hydrogen into a reaction chamber; heating the compound to a temperature of at least 700 degrees Celsius in the reaction chamber such that the compound reacts through a pyrolysis reaction to produce a liquid, where the liquid may include pyroligneous acid; and/or collecting the produced liquid. In some cases, the residence time of the compound may be less than 1,000 seconds. Temperatures above 1,000 degrees Celsius may be utilized in some cases. The produced liquid may be separated into an oil component and a water component that includes the pyroligneous acid. A lighter fraction may be distilled from the water component, where the lighter component includes the pyroligneous acid.
Abstract:
Methods, systems, and devices for liquid hydrocarbon fuel production, hydrocarbon chemical production, and aerosol capture are provided. For example, a carbon-oxygen-hydrogen (C—O—H) compound may be heated to a temperature of at least 800 degrees Celsius such that the C—O—H compound reacts through a non-oxidation reaction to generate at least a hydrocarbon compound that may be at least a component of a liquid hydrocarbon fuel or a hydrocarbon chemical. The liquid hydrocarbon fuel may be a liquid when at a temperature of 20 degrees Celsius. The C—O—H compound may include biomass. In some cases, the hydrocarbon compound produced through the non-oxidation reaction includes a hydrocarbon aerosol form as the hydrocarbon compound at least as it is produced or cools. Some embodiments include aerosol capture methods, systems, and devices, which may include passing a hydrocarbon aerosol form through a material in a liquid phase in order to gather the aerosol material.