Abstract:
A semiconductor device including a conductive line on a substrate, a first gate electrode on the conductive line, a second gate electrode separated by a gate isolation insulating layer on the first gate electrode, a first channel layer on a side surface of the first gate electrode, with a first gate insulating layer therebetween, a first source/drain region on another side surface of the first gate electrode, a second channel layer on another side surface of the second gate electrode on a side that is opposite to the first channel layer, with a second gate insulating layer therebetween, a second source/drain region on the second channel layer, and a third source/drain region on the first channel layer and on a side surface of the second gate electrode on a same side as the first channel layer may be provided.
Abstract:
A memory device includes a substrate including first and second regions, the first region having first wordlines and first bitlines, and the second region having second wordlines and second bitlines, a first memory cell array including first memory cells in the first region, the first memory cell array having volatility, and each of the first memory cells including a cell switch having a first channel region adjacent to a corresponding first wordline of the first wordlines, and a capacitor connected to the cell switch, and a second memory cell array including second memory cells in the second region, the second memory cell array having non-volatility, and each of the second memory cells including a second channel region adjacent to a corresponding second wordline of the second wordlines, and a ferroelectric layer between the corresponding second wordline of the second wordlines and the second channel region.
Abstract:
A semiconductor device includes: a conductive line that extends in a first direction on a substrate; an insulating pattern layer on the substrate and having a trench that extends in a second direction, the trench having an extension portion that extends into the conductive line; a channel layer on opposite sidewalls of the trench and connected to a region, exposed by the trench, of the conductive line; first and second gate electrodes on the channel layer, and respectively along the opposite sidewalls of the trench; a gate insulating layer between the channel layer and the first and second gate electrodes; a buried insulating layer between the first and second gate electrodes within the trench; and a first contact and a second contact, respectively buried in the insulating pattern layer, and respectively connected to upper regions of the channel layer.
Abstract:
A ferroelectric semiconductor device includes an active region extending in one direction, a gate insulating layer crossing the active region, a ferroelectric layer disposed on the gate insulating layer and including a hafnium oxide, a gate electrode layer disposed on the ferroelectric layer, and source/drain regions disposed on the active region to be adjacent to both sides of the gate insulating layer, wherein the ferroelectric layer includes 20% or more of orthorhombic crystals, and an upper surface of the source/drain region is located at a level equal to or higher than an upper surface of the ferroelectric layer.
Abstract:
A semiconductor device includes a plurality of capacitors disposed on a substrate and a support pattern supporting upper portions and lower portions of the capacitors. Each of the capacitors includes a lower electrode, an upper electrode, and a dielectric layer between the lower and upper electrodes. The lower electrode includes a first electrode portion electrically connected to the substrate and having a solid shape and a second electrode portion stacked on the first electrode portion and having a shape comprising an opening therein. The support pattern includes an upper pattern contacting sidewalls of top end portions of the lower electrodes and a lower pattern vertically spaced apart from the upper pattern. The lower pattern contacts sidewalls under the top end portions of the lower electrodes.
Abstract:
A semiconductor device includes a plurality of capacitors disposed on a substrate and a support pattern supporting upper portions and lower portions of the capacitors. Each of the capacitors includes a lower electrode, an upper electrode, and a dielectric layer between the lower and upper electrodes. The lower electrode includes a first electrode portion electrically connected to the substrate and having a solid shape and a second electrode portion stacked on the first electrode portion and having a shape comprising an opening therein. The support pattern includes an upper pattern contacting sidewalls of top end portions of the lower electrodes and a lower pattern vertically spaced apart from the upper pattern. The lower pattern contacts sidewalls under the top end portions of the lower electrodes.
Abstract:
A semiconductor device includes bit lines, gate electrodes, a gate insulation pattern and a channel structure on a substrate. Each of the bit lines extends in a first direction, and the bit lines may be spaced apart from each other in a second direction. The gate electrodes are spaced apart from each other in the first direction, and each of the gate electrodes extends in the second direction. For each of the gate electrodes, a gate insulation pattern is formed on a sidewall in the first direction of the gate electrode, and a channel structure is formed on a sidewall in the first direction of the gate insulation pattern. The channel structure includes a first amorphous channel including an amorphous oxide semiconductor and a first crystalline channel including a crystalline oxide semiconductor and contacting an upper surface of the first amorphous channel.
Abstract:
A semiconductor device can include a semiconductor substrate and an active region in the semiconductor substrate, where the active region can include an oxide semiconductor material having a variable atomic concentration of oxygen. A first source/drain region can be in the active region, where the first source/drain region can have a first atomic concentration of oxygen in the oxide semiconductor material. A second source/drain region can be in the active region spaced apart from first source/drain region and a channel region can be in the active region between the first source/drain region and the second source/drain region, where the channel region can have a second atomic concentration of oxygen in the oxide semiconductor material that is less than the first atomic concentration of oxygen. A gate electrode can be on the channel region and extend between the first source/drain region and the second source/drain region.
Abstract:
A semiconductor memory device includes a substrate, a conductive line extending in a first horizontal direction above the substrate, an isolation insulating layer including a channel trench extending in a second horizontal direction intersecting with the first horizontal direction and extending from an upper surface to a lower surface of the isolation insulating layer, above the conductive line, a channel structure disposed above the conductive line, a gate electrode extending in the second horizontal direction, in the channel trench, a capacitor structure above the isolation insulating layer, and a contact structure interposed between the channel structure and the capacitor structure, wherein the channel structure includes an amorphous oxide semiconductor layer disposed in the channel trench above the conductive line, and an upper crystalline oxide semiconductor layer interposed between the amorphous oxide semiconductor layer and the contact structure.
Abstract:
A memory device includes a substrate including first and second regions, the first region having first wordlines and first bitlines, and the second region having second wordlines and second bitlines, a first memory cell array including first memory cells in the first region, the first memory cell array having volatility, and each of the first memory cells including a cell switch having a first channel region adjacent to a corresponding first wordline of the first wordlines, and a capacitor connected to the cell switch, and a second memory cell array including second memory cells in the second region, the second memory cell array having non-volatility, and each of the second memory cells including a second channel region adjacent to a corresponding second wordline of the second wordlines, and a ferroelectric layer between the corresponding second wordline of the second wordlines and the second channel region.