Abstract:
A transistor structure including an active pattern defined by a first isolation pattern on a substrate, a second isolation pattern at an upper portion of the active pattern, a gate structure extending through the active pattern and the first isolation pattern, at least a lower portion of the gate structure extending through the second isolation pattern, a first oxide semiconductor pattern on a lower surface and a sidewall of the gate structure, the first oxide semiconductor pattern including In-rich IGZO and at least partially contacting the first and second isolation patterns, and source/drain regions at upper portions of the active pattern adjacent to the gate structure may be provided.
Abstract:
A memory device is provided. The memory device includes: a substrate; a memory unit provided on the substrate; a channel provided on the memory unit; a word line surrounded by the channel and extending in a first horizontal direction; a gate insulating layer interposed between the channel and the word line; and a bit line contacting an upper end of the channel and extending in a second horizontal direction that crosses the first horizontal direction.
Abstract:
A semiconductor memory device includes a memory cell array of a three-dimensional structure including a plurality of memory cells repeatedly arranged in a first horizontal direction and a second horizontal direction that are parallel with a main surface of a substrate and cross each other on the substrate and in a vertical direction perpendicular to the main surface, wherein each of the plurality of memory cells includes three transistors. A method of manufacturing a semiconductor memory device includes forming simultaneously a plurality of memory cells arranged in a row in a vertical direction on a substrate, wherein each of the plurality of memory cells includes three transistors.
Abstract:
A semiconductor memory device includes: a first word line extending in a vertical direction; a second word line spaced apart from the first word line in a first horizontal direction and extending in the vertical direction; a first semiconductor pattern of a ring-shaped horizontal cross-section surrounding the first word line and constituting a portion of a first cell transistor; a second semiconductor pattern of a ring-shaped horizontal cross-section surrounding the second word line and constituting a portion of a second cell transistor; a cell capacitor between the first semiconductor pattern and the second semiconductor pattern and including a first electrode, a second electrode, and a capacitor dielectric film; a first bit line opposite the cell capacitor with respect to the first semiconductor pattern and extending in a second horizontal direction; and a second bit line opposite the cell capacitor with respect to the second semiconductor pattern.
Abstract:
A semiconductor device includes a plurality of capacitors disposed on a substrate and a support pattern supporting upper portions and lower portions of the capacitors. Each of the capacitors includes a lower electrode, an upper electrode, and a dielectric layer between the lower and upper electrodes. The lower electrode includes a first electrode portion electrically connected to the substrate and having a solid shape and a second electrode portion stacked on the first electrode portion and having a shape comprising an opening therein. The support pattern includes an upper pattern contacting sidewalls of top end portions of the lower electrodes and a lower pattern vertically spaced apart from the upper pattern. The lower pattern contacts sidewalls under the top end portions of the lower electrodes.
Abstract:
A semiconductor device includes: a substrate including an active region and a device isolation region; a flat plate structure formed on the substrate; an oxide semiconductor layer covering a top surface of the flat plate structure and continuously arranged on a top surface of the substrate in the active region and the device isolation region; a gate structure arranged on the oxide semiconductor layer and including a gate dielectric layer and a gate electrode; and a source/drain region arranged on both sides of the gate structure and formed in the oxide semiconductor layer, in which, when viewed from a side cross-section, an extending direction of the flat plate structure and an extending direction of the gate structure cross each other.
Abstract:
A memory device is provided. The memory device includes: a substrate; a memory unit provided on the substrate; a channel provided on the memory unit; a word line surrounded by the channel and extending in a first horizontal direction; a gate insulating layer interposed between the channel and the word line; and a bit line contacting an upper end of the channel and extending in a second horizontal direction that crosses the first horizontal direction.
Abstract:
A semiconductor device can include a semiconductor substrate and an active region in the semiconductor substrate, where the active region can include an oxide semiconductor material having a variable atomic concentration of oxygen. A first source/drain region can be in the active region, where the first source/drain region can have a first atomic concentration of oxygen in the oxide semiconductor material. A second source/drain region can be in the active region spaced apart from first source/drain region and a channel region can be in the active region between the first source/drain region and the second source/drain region, where the channel region can have a second atomic concentration of oxygen in the oxide semiconductor material that is less than the first atomic concentration of oxygen. A gate electrode can be on the channel region and extend between the first source/drain region and the second source/drain region.
Abstract:
A semiconductor device can include a semiconductor substrate and an active region in the semiconductor substrate, where the active region can include an oxide semiconductor material having a variable atomic concentration of oxygen. A first source/drain region can be in the active region, where the first source/drain region can have a first atomic concentration of oxygen in the oxide semiconductor material. A second source/drain region can be in the active region spaced apart from first source/drain region and a channel region can be in the active region between the first source/drain region and the second source/drain region, where the channel region can have a second atomic concentration of oxygen in the oxide semiconductor material that is less than the first atomic concentration of oxygen. A gate electrode can be on the channel region and extend between the first source/drain region and the second source/drain region.
Abstract:
A semiconductor device includes a plurality of capacitors disposed on a substrate and a support pattern supporting upper portions and lower portions of the capacitors. Each of the capacitors includes a lower electrode, an upper electrode, and a dielectric layer between the lower and upper electrodes. The lower electrode includes a first electrode portion electrically connected to the substrate and having a solid shape and a second electrode portion stacked on the first electrode portion and having a shape comprising an opening therein. The support pattern includes an upper pattern contacting sidewalls of top end portions of the lower electrodes and a lower pattern vertically spaced apart from the upper pattern. The lower pattern contacts sidewalls under the top end portions of the lower electrodes.