Abstract:
The present invention provides a polyolefin-based resin composition that has improved resilience while maintaining mechanical strength and stretching properties, as well as a molded article and a polyolefin-based resin film formed from this composition.The polyolefin-based resin composition comprises a polyolefin-based resin, a polyalkylene carbonate resin, and an ionic liquid. The polyolefin-based resin film of the present invention is formed by molding the polyolefin-based resin composition and is stretched at least in a monoaxial direction.
Abstract:
The present invention provides an aliphatic polycarbonate that can be thermally decomposed (dewaxed) at a relatively low temperature. The aliphatic polycarbonate comprises a constituent unit represented by formula (1): wherein R1, R2, and R3 are identical or different, and each represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; R4 represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; and n is an integer of 0 to 3.
Abstract:
A laminate by using a paste or solution containing aliphatic polycarbonates having an etching mask function is provided. A method of producing a laminate of the present invention includes a pattern forming step of forming a pattern 80 of a first oxide precursor layer in which a compound of metal to be oxidized into a metal oxide is dispersed in a solution containing a binder (possibly including inevitable impurities) made of aliphatic polycarbonates on an oxide layer 44 or on the second oxide precursor layer to be oxidized into the oxide layer 44; an etching step of, after the pattern forming step, etching the oxide layer 44 or the second oxide precursor layer that is not protected by the pattern 80; and a heating step of, after the etching step, heating the oxide layer 44 or the second oxide precursor layer, and the first oxide precursor layer to a temperature at which the binder is decomposed or higher.
Abstract:
A pressure-sensitive adhesive including an aliphatic polycarbonate as an adhesive component, wherein the aliphatic polycarbonate has no carboxylic acid ester bond or urethane bond in the main chain thereof; and a pressure-sensitive adhesive sheet including a pressure-sensitive adhesive layer obtained by using the pressure-sensitive adhesive.
Abstract:
A binder resin composition comprising an aliphatic polycarbonate resin represented by the formula (1): and an end-capped aliphatic polycarbonate resin represented by the formula (2): wherein each of X and Y, which may be identical or different, is a group having at least one functional group selected from a carboxy group, an ester group, a carbamate group, a silicate group, an isocyanate group, an ether group, an acetal group, and a halogen atom at its end; and an inorganic particle-dispersed paste composition containing the resin composition. The binder resin composition of the present invention can be used in general molded articles, optical materials such as films, fibers, optical fibers, and optical disks, thermally decomposable materials such as ceramic binders, and lost foam casting, medicinal materials such as drug capsules, additives for biodegradable resins, main components for biodegradable resins, and the like.
Abstract:
An aliphatic polycarbonate, an oxide precursor, and an oxide layer are provided, which are capable of controlling stringiness, when a thin film that can be employed for an electronic device or a semiconductor element is formed by a printing method. In an oxide precursor of the present invention, a compound of metal to be oxidized into a metal oxide is dispersed in a solution containing a binder (possibly including inevitable impurities) made of aliphatic polycarbonates, and an aliphatic polycarbonate having a molecular weight of 6000 or more and 400000 or less constitutes 80% by mass or more of all the aliphatic polycarbonates.
Abstract:
It is an object of the invention to provide a thin film transistor and a method for producing the same, which will easily achieve self-aligned formation of a source/drain region without through processes under a vacuum or a low pressure or with no use of expensive equipment. An exemplary method for producing a thin film transistor according to the invention includes an aliphatic polycarbonate layer forming step of forming an aliphatic polycarbonate layer 50 that covers a gate electrode layer 40 disposed above a semiconductor layer 20 with a gate insulator 30 being interposed between the gate electrode layer 40 and the semiconductor layer 20, and also covers the semiconductor layer 20, and has a dopant causing the semiconductor layer 20 to become an n-type or p-type semiconductor layer, and a heating step of heating at a temperature causing introduction of the dopant into the semiconductor layer 20 and decomposition of the aliphatic polycarbonate layer 50.
Abstract:
This invention provides a polyolefin-based resin composition excellent in mechanical strength and elasticity. The polyolefin-based resin composition comprises a polyolefin-based resin, and, per 100 parts by mass of the polyolefin-based resin, 0.05 to 10 parts by mass of an aliphatic polycarbonate resin and 0.01 to 2 parts by mass of an acid modified polypropylene.
Abstract:
An object of this invention is to find a method for introducing a functional group into an aliphatic polycarbonate without impairing the excellent thermal decomposition property of the aliphatic polycarbonate. An aliphatic polycarbonate comprising a constituent unit represented by formula (1): wherein R1, R2, and R3 are identical or different, and each represents a hydrogen atom, a C1-10 alkyl group optionally substituted with one or more substituents, or a C6-20 aryl group optionally substituted with one or more substituents, wherein two groups from among R1 to R3, taken together with the carbon atom or carbon atoms to which these groups are attached, may form a substituted or unsubstituted, saturated or unsaturated 3- to 10-membered aliphatic ring; and X represents a divalent group containing one or more heteroatoms or an alkylene group having 3 or more carbon atoms, and a constituent unit represented by formula (2): wherein R4, R5, R6, and R7 are identical or different, and each represents a hydrogen atom, a C1-10 alkyl group optionally substituted with one or more substituents, or a C6-20 aryl group optionally substituted with one or more substituents, wherein two groups from among R4 to R7, taken together with the carbon atom or carbon atoms to which these groups are attached, may form a substituted or unsubstituted, saturated or unsaturated 3- to 10-membered aliphatic ring, the content of the constituent unit represented by formula (1) being 0.1 mol % or more and 1.5 mol % or less, based on the total amount of the constituent units of formula (1) and formula (2).
Abstract:
Provided is an aliphatic polycarbonate resin having excellent water repellency. Also provided are a partition material, a substrate and a method for producing the same, a method for producing a wiring substrate, and a wiring forming method.The aliphatic polycarbonate resin of the present invention comprises a structural unit represented by the following formula (1): wherein R1, R2, and R3 are each independently a hydrogen atom, a C1-C10 alkyl group, or a C6-C20 aryl group; X is a substituent having a fluorine atom; and R1, R2, and R3 may be the same or different; and the aliphatic polycarbonate resin has a contact angle against water of 90° or more.