Abstract:
The present invention provides a polyolefin-based resin composition that has improved resilience while maintaining mechanical strength and stretching properties, as well as a molded article and a polyolefin-based resin film formed from this composition.The polyolefin-based resin composition comprises a polyolefin-based resin, a polyalkylene carbonate resin, and an ionic liquid. The polyolefin-based resin film of the present invention is formed by molding the polyolefin-based resin composition and is stretched at least in a monoaxial direction.
Abstract:
An aliphatic polycarbonate resin for forming a partition containing a constituent unit represented by the formula (1): wherein R1, R2, R3, and R4 are each independently a hydrogen atom, an alkyl group having one or more carbon atoms, an alkoxyalkyl group having two or more carbon atoms, an aryl group, or an aryloxyalkyl group; at least one of R1, R2, R3, and R4 is an alkyl group having two or more carbon atoms, an alkoxyalkyl group having two or more carbon atoms, an aryl group, or an aryloxyalkyl group; and R1, R2, R3, and R4 may be the same or different; and the aliphatic polycarbonate resin has a contact angle against water of 75° or more. Also disclosed is a partition material including the aliphatic polycarbonate resin, a substrate, a method of producing the substrate, a method for producing a wiring substrate, and a wiring forming method.
Abstract:
The etching mask 80 for screen printing according to one embodiment of the present invention includes aliphatic polycarbonate. Further, the method of producing an oxide layer (the channel 44) according to one embodiment of the present invention includes: an etching-mask forming step of forming a pattern of the etching mask 80 including aliphatic polycarbonate; a contact step of, after the etching-mask forming step, contacting the oxide layer with a solution for dissolving a portion of the oxide layer (the channel 44) which is not protected by the etching mask 80; and a heating step of, after the contact step, heating the oxide layer (the channel 44) and the etching mask 80 to or above a temperature at which the etching mask 80 is decomposed.
Abstract:
Provided is a means capable of realizing a surface-roughening method for modifying the surface of a resin molded article to form a surficial layer, such as a coating or plating, or to impart a function derived from the surface configuration. The method comprises adding a resin composition and performing a post-treatment and is thus simpler and easier than conventional methods. The resin composition is a composition for resin surface roughening that contains an aliphatic polycarbonate and an alkali metal salt.
Abstract:
A pressure sensitive adhesive sheet is provided which comprises a pressure sensitive adhesive layer formed of a pressure sensitive adhesive composition. The pressure sensitive adhesive composition contains an aliphatic polycarbonate and a pressure sensitive adhesive resin other than the aliphatic polycarbonate. The pressure sensitive adhesive sheet can be reduced in the adhesive strength at desired timing by a novel mechanism of action so that the release of an adherend becomes easy. The above pressure sensitive adhesive composition preferably contains an acid/base generator that generates an acid or a base by applying energy.
Abstract:
The invention provides an oxide semiconductor layer that has less cracks and is excellent in electrical property and stability, as well as a semiconductor element and an electronic device each including the oxide semiconductor layer. The invention provides an exemplary method of producing an oxide semiconductor layer, and the method includes the precursor layer forming step of forming, on or above a substrate, a layered oxide semiconductor precursor including a compound of metal to be oxidized into an oxide semiconductor dispersed in a solution including a binder made of aliphatic polycarbonate, and the annealing step of heating the precursor layer at a first temperature achieving decomposition of 90 wt % or more of the binder, and then annealing the precursor layer at a temperature equal to or higher than a second temperature (denoted by X) that is higher than the first temperature, achieves bonding between the metal and oxygen, and has an exothermic peak value in differential thermal analysis (DTA).
Abstract:
The present invention provides a thermally decomposable binder that achieves a reduced residual carbon after sintering, and that can be subjected to a dewaxing treatment at a relatively low temperature in a non-oxidative atmosphere. More specifically, the present invention provides an aliphatic polycarbonate that has a structure obtained by neutralizing a Brønsted acid with an organic onium salt in a side chain.
Abstract:
It is an object of the invention to provide a thin film transistor and a method for producing the same, which will easily achieve self-aligned formation of a source/drain region without through processes under a vacuum or a low pressure or with no use of expensive equipment.
Abstract:
The etching mask 80 for screen printing according to one embodiment of the present invention includes aliphatic polycarbonate. Further, the method of producing an oxide layer (the channel 44) according to one embodiment of the present invention includes: an etching-mask forming step of forming a pattern of the etching mask 80 including aliphatic polycarbonate; a contact step of, after the etching-mask forming step, contacting the oxide layer with a solution for dissolving a portion of the oxide layer (the channel 44) which is not protected by the etching mask 80; and a heating step of, after the contact step, heating the oxide layer (the channel 44) and the etching mask 80 to or above a temperature at which the etching mask 80 is decomposed.
Abstract:
A thermally decomposable binder containing an aliphatic polycarbonate resin containing a constituting unit represented by the formula (1): wherein each of R1, R2 and R3, which may be identical or different, is a hydrogen atom, an alkyl group having from 1 to 10 carbon atoms, or an aryl group having from 6 to 20 carbon atoms; and n is 1 or 2. The thermally decomposable binder and the fine inorganic particle-dispersed paste composition, each containing an aliphatic polycarbonate resin of the present invention can be used in general molded articles, optical materials such as films, fibers, optical fibers, and optical disks, thermally decomposable materials such as ceramic binders, and lost foam casting, medicinal materials such as drug capsules, additives for biodegradable resins, main components for biodegradable resins, and the like.