Abstract:
An apparatus includes a first magnetic layer. A second magnetic layer overlies the first magnetic layer and is magnetically softer than the first magnetic layer. An exchange control layer is between the first magnetic layer and the second magnetic layer. The exchange control layer is magnetic and increases vertical coupling between the first magnetic layer and the second magnetic layer.
Abstract:
The present disclosure relates to methods of manufacturing at least a portion of a magnetic layer of a magnetic recording disk. The methods include forming a plurality of sacrificial, discrete structures via imprint lithography. The sacrificial, discrete structures are used to form a plurality of three-dimensional segregant structures in a magnetic layer of the magnetic recording disk. The present disclosure also relates to corresponding magnetic recording disks.
Abstract:
A DNA sequencing device and related methods, wherein the device includes a substrate, a nanochannel formed in the substrate, a first electrode positioned on a first side of the nanochannel, and a second electrode. The second electrode is positioned on a second side of the nanochannel opposite the first electrode and is spaced apart from the first electrode to form an electrode gap that is exposed in the nanochannel. At least a portion of first electrode is movable relative to the second electrode to decrease a size of the electrode gap.
Abstract:
A DNA sequencing device, and related method, which include an electrode and a plurality of spaced apart alignment structures. The electrode defines an electrode gap, the electrode being operable to detect a change in tunneling current as a DNA strand passes through the electrode gap. The plurality of spaced apart alignment structures are arranged to position nucleotides of the DNA strand in a predetermined orientation as the DNA strand passes through the electrode gap.
Abstract:
Apparatus and methods to identify nucleotides of a DNA strand. The method includes exposing the DNA strand to a first dye or peptide, attaching the first dye or peptide to a first type of nucleotide (A,T,C,G) of the DNA strand, the first dye or peptide changing a conductance of the first type of nucleotide to which the first dye or peptide is attached, and measuring a tunneling current signal for all nucleotides of the DNA strand, the changed conductance of the first type of nucleotide providing amplified tunneling current discrimination of the nucleotides of the DNA strand.
Abstract:
Apparatus and methods to sequence DNA. A DNA sequencing device includes a passage, a first electrode, and a second electrode. The passage has a width and a length. The first and second electrodes are exposed within the passage and spaced apart from each other to form an electrode gap. The electrode gap is no greater than about 2 nm. The DNA sequencing device is operable to measure with the first and second electrodes a change in electronic signal in response to nucleotides of a DNA strand passing through the electrode gap.
Abstract:
A DNA sequencing device includes a first layer having a nanochannel formed therein, and a pair of electrodes arranged vertically relative to each other and spaced apart to define an electrode gap. The electrode gap is exposed in the nanochannel, and the electrode gap is in the range of about 0.3 nm to about 2 nm.
Abstract:
A perpendicular magnetic media includes a substrate, a patterned template, a seed layer and a magnetic layer. The patterned template is formed on the substrate and includes a plurality of growth sites that are evenly spaced apart from each other. The seed layer is formed over the patterned template and the exposed areas of the substrate. Magnetic material is sputter deposited onto the seed layer with one grain of the magnetic material nucleated over each of the growth sites. The grain size distribution of the magnetic material is reduced by controlling the locations of the growth sites which optimizes the performance of the perpendicular magnetic media.
Abstract:
An apparatus is configured to include a first magnetic layer, a second magnetic layer and a break layer between the first magnetic layer and the second magnetic layer. The first magnetic layer includes a Curie temperature gradient between a first surface and a second surface of the first magnetic layer. The second magnetic layer includes a Curie temperature gradient between a third surface and a fourth surface of the second magnetic layer. The first magnetic layer has an average Curie temperature that is higher than the second magnetic layer.
Abstract:
Apparatus and methods relating to DNA sequencing are provided. In one embodiment, a DNA sequencing device includes a nanochannel having a width that is approximately 0.3 nm to approximately 20 nm. A pair of electrodes having portions exposed to the nanochannel may form a tunneling current electrode (TCE) with an electrode gap of approximately 0.1 nm to approximately 2 nm, and more particularly about 0.3 nm to about 1 nm. In one embodiment, at least one of the pair of electrodes is formed as a suspended electrode. An actuator may be associated with the suspended electrode to displace it relative to the other electrode. In various embodiments, the nanochannel and/or the electrodes may be formed using thermal reflow processes to reduce the size of such features.