Abstract:
An apparatus for coupling light between input and output waveguides includes a substrate, an input waveguide disposed on the substrate and comprising a first optical axis, and an output waveguide disposed on the substrate and comprising a second optical axis vertically offset from the first optical axis. A superlens is disposed on the substrate between the input waveguide and the output waveguide. The superlens has a middle optical axis and comprises a vertically graded refractive index film having a refractive index distribution n(y), where y is a vertical direction substantially perpendicular to the middle optical axis.
Abstract:
According to embodiments of the present invention, an optical arrangement is provided. The optical arrangement includes a support substrate; at least one optical fiber arranged on the support substrate; at least one waveguide arranged on the support substrate and adjacent to the at least one optical fiber; the at least one waveguide defining a light propagation direction; and at least one grin index lens arranged asymmetrically relative to the light propagation direction such that light is coupled from the at least one optical fiber through the at least one grin index lens to the at least one waveguide.
Abstract:
The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. In the invention, the location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or output slit (or output waveguide) even with large beam diffraction angle from the entrance slit or input slit (or input waveguide). The second one being specific for a particular design goal of a curved-grating spectrometer. In an embodiment, elliptical mirrors each with focal points at the slit and detector are used for each groove to obtain aberration-free curved mirrors.