Abstract:
The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (COGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. The location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or a first anchor output slit even with large beam diffraction angle from the entrance slit or input slit, the second one being specific for a particular design goal of a curved-grating spectrometer.
Abstract:
A spectral colorimetric apparatus for detecting a color of an image of a subject, including: an illumination optical system illuminating the subject on a detection surface; a spectral optical system including a spectral element spectrally separating the beam diffused by the subject and a light receiving element array detecting a spectral intensity distribution; and a guiding optical system for guiding a beam diffused by the subject, wherein: the detection surface is parallel to a spectral plane including a principal ray of a beam entering the spectral optical system and a principal ray of a beam spectrally separated; the principal ray of the beam enters the spectral optical system within the spectral plane obliquely to a line joining a center of the light receiving element array with a surface vertex of the spectral element; and a light receiving surface of the light receiving element array is orthogonal to the spectral plane.
Abstract:
There is provided is a spectrometer having a concave reflection type diffraction element, wherein, among surfaces other than a diffraction surface of the diffraction element, non-diffraction surfaces which are located outside the diffraction surface at the same side as the diffraction surface are a glossy surface, the spectrometer includes a light detection unit which is located at an imaging position of a first-order diffracted light diffracted by the diffraction element to receive the first-order diffracted light, and the light detection unit is disposed inside optical paths of light beams regularly reflected on the non-diffraction surfaces outside the diffraction surface. Accordingly, it is possible to effectively suppress a stray light reflected on the surfaces other the diffraction surface from being incident into the light detection unit and to detect the light spectrally diffracted by the diffraction surface at high accuracy.
Abstract:
The invention relates to a spectrometer comprising a hollow main optical body having at least one light channel, a light source, a diffraction grating having a grating central point, a light inlet opening, and a detector unit, which are arranged in such a way that the focal curve of the spectrometer satisfies the back focus equation. In order to create a spectrometer having sufficient spectral resolution from a low-price, light, and easy-to-process material, which spectrometer is able to operate in a large temperature interval even without thermostatic control, according to the invention the light inlet opening is arranged on a compensation body, the compensation body is arranged in the light channel and fastened to the main optical body between the light source and the diffraction grating, and the compensation body is dimensioned in such a way that the compensation body changes the distance between the light inlet opening and the grating central point when the main optical body thermally expands.
Abstract:
The invention concerns an optical system. The optical system comprises an input for receiving an optical signal, a predetermined output plane, and a diffraction grating for separating the optical signal received at the input into spectral elements thereof. The grating has a diffraction surface, which is formed by a photolithography process. The diffraction surface has a first predetermined profile. The first profile is formed by a plurality of points each conducted by different equations. Consequently, each spectral component is focused on the predetermined output plane.
Abstract:
An analysis apparatus for analyzing a specimen comprises a spectral separator for dispersing spatially an electromagnetic wave introduced from the specimen into spectral components, a sensing element array containing plural sensing elements for sensing the spectral components of the electromagnetic wave dispersed spatially by the spectral separator, and a spectrum calculator for calculating the spectrum from the signal sensed by the sensing elements; the sensing element array having sensitivities different to each of the spectral components of the electromagnetic wave dispersed spatially by the spectral separator, and the spectral separator and the sensing element array being placed so as to receive the spectral components by each of the sensing elements at different incident angles.
Abstract:
Objects are to obtain a highly accurate diffraction element that may prevent an intensity decrease of a light beam entering a light receiving unit without a decrease in diffraction efficiency and without a problem of flare or the like, a manufacturing method for the diffraction element, and a spectrometer using the same. A diffraction element (2) includes a diffraction grating formed on a substrate having a curved surface. In the diffraction element (2), the curved surface (3) has an anamorphic shape formed by pivoting a curved line (I) in a plane about a straight line (II) in the same plane serving as a rotation axis, and gratings (10a) of the diffraction grating (10) exist in cross sections orthogonal to the rotation axis.
Abstract:
The invention relates to a method for the spectral analysis of metal samples with the following steps: a. Recording of a spectrum of an unknown sample with a number of preset excitation parameters, b. Comparison of the spectrum with stored spectra of a number of control samples, c. Determination of the control sample with the best concordance of spectra, d. Setting of the excitation parameters, which are stored for the best and closest control sample determined in step c, e. Recording of the spectrum of the unknown sample with the excitation parameters set in step d, f. Calculation of the intensity ratios of the analysis lines stored for the control sample and the internal standards of the spectrum recorded in step e.
Abstract:
An infrared spectrometer is described wherein a detector array is optically coupled to a slab waveguide structure. A focal plane is provided outside of the output face of the slab waveguide structure and the detector array is mounted onto the slab waveguide structure at a fixed distance from the output face on the output focal plane.
Abstract:
An optical device includes an imaging device for imaging an incident beam onto a focal surface, and a support element which includes at least one side having a shape corresponding to the focal surface, where the side is located on the focal surface. The invention also includes a sensor array in close contact with the side of the support element having the shape of the focal surface.