Abstract:
A signal adder circuit includes: an adding unit that includes at least a pair of amplification elements in which a constant current flows between ground terminals and a ground, input signals having different phases are input to input terminals, and output terminals to which a power supply voltage is applied are connected to each other; a gain control unit that is provided between the ground and each of the ground terminals of the amplification elements so as to adjust the amplitudes of the input signals having different phases; and a phase control unit that is provided between the ground and each of the ground terminals of the amplification elements so as to adjust the phases of the input signals having different phases.
Abstract:
A direct conversion circuit includes first and second mixers to which a radio frequency signal is input. An oscillator supplies the first and second mixers with local oscillation signals whose phases are orthogonal to each other. A baseband processing circuit processes baseband signals output from the first and second mixers. A level-difference correcting circuit which corrects the two baseband signals input to the baseband processing circuit so that the levels of both are equal to each other is provided in a stage before the first and second mixers. The levels of the baseband signals are corrected by changing relative levels of the radio frequency signal input to the first mixer and the radio frequency signal input to the second mixer.
Abstract:
A signal adder circuit includes: an adding unit that includes at least a pair of amplification elements in which a constant current flows between ground terminals and a ground, input signals having different phases are input to input terminals, and output terminals to which a power supply voltage is applied are connected to each other; a gain control unit that is provided between the ground and each of the ground terminals of the amplification elements so as to adjust the amplitudes of the input signals having different phases; and a phase control unit that is provided between the ground and each of the ground terminals of the amplification elements so as to adjust the phases of the input signals having different phases.
Abstract:
A switch circuit is provided for at least one of a previous stage of a VHF-band frequency converter and a previous stage of a UHF-band frequency converter. Each switch circuit passes a signal when a frequency converter at a subsequent stage of the switch circuit is operating, and does not pass a signal when the frequency converter at the subsequent stage of the switch circuit is not operating.
Abstract:
A digital television tuner is realized in which the construction of a baseband signal processing portion is simple, it is difficult for a local oscillation signal to leak to the input end side, and in which image interference is suppressed. The digital television tuner includes a frequency conversion device for converting the frequency of a digital television signal of a channel to be received from among channels arranged in a predetermined frequency band into the highest frequency of the frequency band or higher; two mixing devices for outputting two baseband signals whose phases are mutually orthogonal to each other by demodulating the frequency-converted digital television signal; a local oscillation device for inputting local oscillation signals whose phases are mutually orthogonal to each other to the two mixing devices; and an addition device for adding together the two baseband signals, wherein the frequency of the local oscillation signals is set to be the same frequency as the frequency at the end of the band in the channel of the frequency-converted digital television signal, and one of the baseband signals is converted into the same phase as that of the other, after which the signals are input to the addition device.