Abstract:
A method of fabricating a gate cap layer includes providing a substrate with an interlayer dielectric disposed thereon, wherein a recess is disposed in the interlayer dielectric and a metal gate fills in a lower portion of the recess. Later, a cap material layer is formed to cover the interlayer dielectric and fill in an upper portion of the recess. After that, a first sacrifice layer and a second sacrifice layer are formed in sequence to cover the cap material layer. The first sacrifice layer has a composition different from a composition of the cap material layer. The second sacrifice layer has a composition the same as the composition of the cap material layer. Next, a chemical mechanical polishing process is preformed to remove the second sacrifice layer, the first sacrifice layer and the cap material layer above a top surface of the interlayer dielectric.
Abstract:
A conductive structure includes a substrate including a first dielectric layer formed thereon, a first trench formed in the first dielectric layer, a first barrier layer formed in the first trench, a first nucleation layer formed on the first barrier layer, a first metal layer formed on the first nucleation layer, and a first high resistive layer sandwiched in between the first barrier layer and the first metal layer.
Abstract:
A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.
Abstract:
A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.
Abstract:
A method of fabricating an epitaxial layer includes providing a silicon substrate. A dielectric layer covers the silicon substrate. A recess is formed in the silicon substrate and the dielectric layer. A selective epitaxial growth process and a non-selective epitaxial growth process are performed in sequence to respectively form a first epitaxial layer and a second epitaxial layer. The first epitaxial layer does not cover the top surface of the dielectric layer. The recess is filled by the first epitaxial layer and the second epitaxial layer. Finally, the first epitaxial layer and the second epitaxial layer are planarized.
Abstract:
A method of fabricating a gate cap layer includes providing a substrate with an interlayer dielectric disposed thereon, wherein a recess is disposed in the interlayer dielectric and a metal gate fills in a lower portion of the recess. Later, a cap material layer is formed to cover the interlayer dielectric and fill in an upper portion of the recess. After that, a first sacrifice layer and a second sacrifice layer are formed in sequence to cover the cap material layer. The first sacrifice layer has a composition different from a composition of the cap material layer. The second sacrifice layer has a composition the same as the composition of the cap material layer. Next, a chemical mechanical polishing process is preformed to remove the second sacrifice layer, the first sacrifice layer and the cap material layer above a top surface of the interlayer dielectric.
Abstract:
A method for manufacturing a semiconductor device and a device manufactured using the same are provided. According to the embodiment, substrate with a dielectric layer formed thereon is provided. Plural trenches are defined in the dielectric layer, and the trenches are isolated by the dielectric layer. A first barrier layer is formed in the trenches as barrier liners of the trenches, followed by filling the trenches with a conductor. Then, the conductor in the trenches is partially removed to form a plurality of recesses, wherein remained conductor has a flat surface. Next, a second barrier layer is formed in the recesses as barrier caps of the trenches.
Abstract:
The present invention provides a wafer polishing pad, the wafer polishing pad includes a polishing material layer, a plurality of recesses are formed on the top surface of the polishing material layer, and a warning element disposed within the polishing material layer, the warning element and the polishing material layer have different colors. The feature of the invention is that forming a warning element in the polishing material layer, when the visible state of the warning element is changed, for example, when the warning element appears, disappears or changes the shapes, it means that the wafer polishing pad needs to be replaced. In this way, the user can confirm the destroying situation of the wafer polishing pad easily, and also improving the manufacturing process efficiency.
Abstract:
The present invention provides a wafer polishing pad, the wafer polishing pad includes a polishing material layer, a plurality of recesses are formed on the top surface of the polishing material layer, and a warning element disposed within the polishing material layer, the warning element and the polishing material layer have different colors. The feature of the invention is that forming a warning element in the polishing material layer, when the visible state of the warning element is changed, for example, when the warning element appears, disappears or changes the shapes, it means that the wafer polishing pad needs to be replaced. In this way, the user can confirm the destroying situation of the wafer polishing pad easily, and also improving the manufacturing process efficiency.
Abstract:
A method of planarizing a substrate surface is disclosed. A substrate having a major surface of a material layer is provided. The major surface of the material layer comprises a first region with relatively low removal rate and a second region of relatively high removal rate. A photoresist pattern is formed on the material layer. The photoresist pattern masks the second region, while exposes at least a portion of the first region. At least a portion of the material layer not covered by the photoresist pattern is etched away. A polish stop layer is deposited on the material layer. A cap layer is deposited on the polish stop layer. A chemical mechanical polishing (CMP) process is performed to polish the cap layer.