Abstract:
Heat pump cycle provided with a fluidic loop connecting two heat exchangers. The fluidic loop is filled with an electro-caloric liquid as a heat transfer medium. Applying electric filed in one of the heat exchangers the temperature of the electro-caloric liquid is changed.
Abstract:
A pressure vessel assembly includes a vessel including a wall defining a chamber and a circumferentially continuous lip projecting into the chamber from the wall. The lip defines a through-bore in fluid communication with the chamber. A nozzle assembly including a tube and a flange projecting radially outward from the tube. The tube includes a first portion projecting from the flange and through the through-bore and an opposite second portion projecting outward from the flange. The flange is in contact with the wall and the first portion includes an outer surface having a contour configured to produce sealing friction between the lip and the outer surface.
Abstract:
A method for deep roll peening a workpiece includes deep roll peening a workpiece by moving the workpiece along a feed path through multiple groups of opposed rollers that are arranged in series. Each group of opposed rollers includes a rim that defines a workpiece engagement surface that exerts a deep roll peening force on the workpiece. A deep roll peening system includes multiple groups of opposed rollers. Each of the opposed rollers is rotatably mounted and has a rim that defines a workpiece engagement surface. The workpiece engagement surfaces are spaced apart from each other by a gap. The groups are arranged in series such that the gaps define a feed path for receiving a workpiece into serial contact with the workpiece engagement surfaces.
Abstract:
An embodiment of a tool assembly includes a robotic assembly, a tool mount, and a non-axisymmetric deep rolling tool. The robotic assembly includes a plurality of linear arms connected in series between a base end and a working end. Adjacent ones of the plurality of arms are connected via a corresponding plurality of multi-axis joints such that the working end is articulated by movement of one or more of the plurality of arms relative to one or more of the plurality of multi-axis joints. The tool mount is connected to one of the linear arms or one of the multi-axis joints at the working end of the robotic assembly. The non-axisymmetric deep rolling tool is connected to the tool mount, and includes a spring-loaded shaft assembly disposed along a first axis. A hub has an upper hub portion adjacent to the distal end of the spring-loaded shaft assembly aligned with the first axis, and a lower hub portion extending along a second axis, forming a nonzero angle relative to the first axis. A roller disk is joined to the lower portion of the hub and is rotatable about the second axis parallel to the second portion of the hub.
Abstract:
A carrier gas recovery system for use in cold spray manufacturing recovers carrier gas utilized during the cold spray process and recycles the carrier gas for immediate use or stores the carrier gas for future use. The carrier gas recovery system includes an enclosure subsystem, a filtration subsystem, a reclamation subsystem, and a compensation subsystem. An article is placed in the enclosure and particulate matter is carried to the article on a carrier gas stream. Carrier gas in the enclosure is filtered through the filtration subsystem to remove particulate from the carrier gas, and the filtered carrier gas is fed to the reclamation subsystem. The carrier gas either flows to a gas separator, to increase the concentration of carrier gas, or to the compensation subsystem if the carrier gas concentration is sufficiently high. The carrier gas can be stored in the compensation subsystem or used in further cold spray manufacturing.
Abstract:
Embodiments are directed to obtaining a specification comprising at least one requirement associated with a heating, ventilation, and air-conditioning (HVAC) system, and based on the specification, configuring a control system to control a movement of fluid back and forth across at least one regenerator device of the HVAC system and a mixing of the fluid with ambient air.
Abstract:
An illustrative example container includes a plurality of internal support members having a surface contour that at least approximates a minimum surface. The plurality of internal support members collectively provide structural support for carrying loads on the container. The plurality of internal support members collectively establish a plurality of cavities for at least temporarily containing fluid. An outer shell is connected with at least some of the internal support members. The outer shell includes a plurality of curved surfaces. The outer shell encloses the cavities.
Abstract:
A composite pressure vessel assembly includes a plurality of lobes, each of the lobes having at least one interior wall and at least one curved wall, the plurality of lobes being positioned in a side by side arrangement and extending in a longitudinal direction from a first end to a second end. Also included is a plurality of end caps disposed at the ends of the lobes, wherein the plurality of lobes and end caps are formed of at least one fiber-reinforced polymer. A method of manufacturing a composite pressure vessel assembly is provided. The method includes forming a plurality of lobes consisting of at least one fiber-reinforced polymer. The method also includes forming a main body with the plurality of lobes, the lobes disposed in a side by side arrangement.
Abstract:
A pressure vessel assembly includes a vessel including a wall defining a chamber and a circumferentially continuous lip projecting into the chamber from the wall. The lip defines a through-bore in fluid communication with the chamber. A nozzle assembly including a tube and a flange projecting radially outward from the tube. The tube includes a first portion projecting from the flange and through the through-bore and an opposite second portion projecting outward from the flange. The flange is in contact with the wall and the first portion includes an outer surface having a contour configured to produce sealing friction between the lip and the outer surface.
Abstract:
A pressure vessel configured to store a pressurized fluid is provided including a plurality of lobes. Each lobe includes at least one vertically arranged interior wall. The plurality of lobes are positioned in a side by side configuration such that a first interior wall of a first lobe is positioned adjacent a second interior wall of a second adjacent lobe. The first interior wall and the second interior wall are configured to contact one another at a first point of tangency. A first tangent intersects the first lobe at the first point of tangency and a second tangent intersects the second lobe at the first point of tangency. The first tangent and the second tangent are separated by about 120 degrees.