Abstract:
Polymer/copper combination that can selectively target and kill cancer cells are described. Materials can include the reaction product of a biocompatible hydrophilic polymer and pyridine-2-thiol containing monomer. The copolymer reaction product can include pyridine-2-thiol side groups pendant to the backbone via a disulfide linkage. The hydrophilic component can form the polymer backbone and/or can form hydrophilic pendant groups off of the backbone. Copper ions can be associated with the copolymer.
Abstract:
Described herein are methods and systems for the preparation of a brain targeted cerium oxide nanop article (CeNP) and its application in treating central neuronal system diseases. The brain targeted CeNP (T-CeNP) can effectively pass the blood brain barrier and specifically target brain tissue and exhibit anti-inflammatory and anti-oxidant effects.
Abstract:
A hetero-targeted, dual-responsive nanogel to deliver chemotherapeutic agents to a metastatic cancer is provided. The nanogel includes a first chemotherapeutic agent, a second chemotherapeutic agent, a first targeting ligand, and a second targeting ligand. A method of treating cancer in a mammal with the nanogel are also provided.
Abstract:
The preparation of dual functionalized nanoparticles is generally provided along with their application. The dual functionalized nanoparticles provide dual targeting and can effectively pass the blood brain barrier and target brain tissue. The dual targeted and dual responsive nanoparticles are functionalized to include at least two different ligands that are capable of transport across the blood brain barrier. The nanoparticles can be prepared from polymeric materials that can be biocompatible, provide long circulation life in a body, and be successfully ligated to both functionalities by use of acid-sensitive and/or redox potential-sensitive bonds for delivery across the blood brain barrier and delivery of a payload to brain tissue.
Abstract:
A carrier-free nanoparticle based on the self-assembly of curcumin-erlotinib conjugate (EPC) that exhibits stronger cell killing, better anti-migration effects, and anti-invasion effects for pancreatic cancer cells than the combination of free curcumin and erlotinib.
Abstract:
Delivery systems and their methods of formation are generally provided. The delivery system can protect a delivery molecule (e.g., DNA/RNA) and deliver it into a cell via serum. In one embodiment, the method can include binding a delivery molecule with polyethylenimine such that an end of the delivery molecule is exposed; capping the end of the delivery molecule with a first biocompatible polymer to form a core; and encapsulating the core with a second biocompatible polymer. The resulting delivery system can include a delivery molecule bonded with polyethylenimine such that an end of the delivery molecule is exposed; a first biocompatible polymer electrostatically bonded to the end of the delivery molecule to form a core; and a second biocompatible polymer encapsulating the core.
Abstract:
Polymer/copper combinations that can selectively target and kill cancer cells are described. Materials can include the reaction product of a biocompatible hydrophilic polymer and pyridine-2-thiol containing monomer. The copolymer reaction product can include pyridine-2-thiol side groups pendant to the backbone via a disulfide linkage. The hydrophilic component can form the polymer backbone and/or can form hydrophilic pendant groups off of the backbone. Copper ions can be associated with the copolymer.
Abstract:
Polymer/drug conjugates that can selectively target and kill cancer cells are described. Conjugates can include a copolymer formed by the reaction of a biocompatible hydrophilic component and a disulfiram derivative. The copolymer reaction product can include additional functional groups pendant to the backbone via a disulfide linkage, for instance copper chelators. The hydrophilic component can form the polymer backbone and/or can form hydrophilic pendant groups off of the backbone. Copper ions can be associated with the copolymer.
Abstract:
Polymer/drug conjugates that can selectively target and kill cancer cells are described. Conjugates can include a copolymer formed by the reaction of a biocompatible hydrophilic component and a disulfiram derivative. The copolymer reaction product can include additional functional groups pendant to the backbone via a disulfide linkage, for instance copper chelators. The hydrophilic component can form the polymer backbone and/or can form hydrophilic pendant groups off of the backbone. Copper ions can be associated with the copolymer.
Abstract:
Polymer/copper combination that can selectively target and kill cancer cells are described. Materials can include the reaction product of a biocompatible hydrophilic polymer and pyridine-2-thiol containing monomer. The copolymer reaction product can include pyridine-2-thiol side groups pendant to the backbone via a disulfide linkage. The hydrophilic component can form the polymer backbone and/or can form hydrophilic pendant groups off of the backbone. Copper ions can be associated with the copolymer.