Abstract:
According to exemplary scanning devices herein, a platen has a sheet side and a scanner side, opposite the sheet side. A scanner is located on the scanner side of the transparent platen. The platen has a constant velocity transport (CVT) scanning position at an end of the platen. A portion of the platen, located at the CVT scanning position of the platen has integral transparent electrodes and incorporates a polymer/liquid crystal filler material that is white in a first state and transparent in a second state. A scanner is located on the scanner side of the platen. A controller is electrically connected to the electrodes. The controller controls the state of the polymer/liquid crystal filler material during scanning of a document and during white calibration of the scanner.
Abstract:
A document scanning device includes first and second image sensors spaced along a document path and positioned to scan first and second sides of an input document. A first driven belt is configured to receive the input document directly onto a first surface of the first driven belt and transports the document past the first image sensor, where a first side of the document is scanned. A second driven belt, horizontally spaced from the first driven belt, receives the document after it has been scanned by the second image sensor and transports the document to an output. The device is suited to scanning of a variety of substrates and document sizes, such as normal, small, rigid, or delicate documents as the document path can be substantially straight and provide support for the document during scanning allowing delicate, small or rigid documents to be scanned.
Abstract:
A scanning device includes a transparent platen which receives a sheet to be scanned. A backing assembly is spaced from the platen by the sheet during scanning. The backing assembly includes a backing plate of a fixed color and an electrochromic layer intermediate the backing plate and the platen. The electrochromic layer has a first state in which the electrochromic layer is opaque and has a different color from the fixed color, and a second state, in which the electrochromic layer is transparent to expose the backing plate through it. A sensor is positioned to acquire an image of the sheet based on light passing through the platen. A controller selectively applies a voltage across the electrochromic layer to change the electrochromic layer between the first and second states.
Abstract:
The present application discloses methods and systems for calibrating a scanning system. The scanning system comprises a light-transmissive platen defining a top surface and a bottom surface, a controller, a document handler, and a scanner bar for recording image data from documents at various document heights. In one embodiment, the calibration method proposes the use of two calibration strips in a document scanning system that has both platen scanning and Constant Velocity Transport (CVT) scanning modes. In another embodiment, a scanner is disclosed with a dual calibration target or a single calibration target that is manufactured with two (2) different heights to correct the illumination profile at the CVT scanning height or at the platen scanning height.