Abstract:
An electronic device includes a helical resilient member serving as an electrical inductance element. The electronic device also includes an antenna, a signal feeding line, and a transmitting/receiving module. The helical resilient member has first and second ends with a predetermined number of turns of coil arranged therebetween the first and second ends, and is made of electrically conductive materials so that the turns of coil defines an electrical inductance. The signal feeding line is connected between the helical resilient member and a signal feed point of the antenna. The transmitting/receiving module is connected to the helical resilient member so as to couple the inductance of the helical resilient member to the transmitting/receiving module.
Abstract:
Disclosed is an antenna device arranged inside a display module of an electronic device with an anti-EMI plate. The antenna device includes an antenna element with a ground connecting end and a signal feeding end for transceiving a wireless signal, a ground connecting line coupled to the ground connecting end of the antenna element and the anti-EMI plate, and an antenna signal feeding line coupled to the signal feeding end of the antenna element for feeding the wireless signal transceived by the antenna element.
Abstract:
Disclosed is an antenna device for transceiving a wireless signal. The antenna device includes an antenna element adapted to establish a radiation pattern during transceiving the wireless signal; an antenna signal feeding line coupling to the antenna element for feeding the wireless signals transceived by the antenna element; and at least one radiation pattern adjustment element arranged at an adjacent position with respect to the antenna element and within the established radiation pattern of the antenna element to adjust the radiation pattern of the antenna element.
Abstract:
This invention discloses a chip heat dissipation system for a chip in heat dissipating and a manufacturing method and a structure of heat dissipation device. The chip heat dissipation system includes a heat dissipation device, a heat exchange device, a pump assembly device and at least two pipes. This heat dissipation device is used for receiving waste heat generate from the chip, then heat exchange device is used for discharging waste heat. Moreover, the heat exchange device is composed of a thermal conduction material, including a metal material and a bracket structure of carbon element. Also, the pipes are used for connecting at least two connection ends of the heat dissipation device and the heat exchange device and then the pump assembly device is used for circulating a fluid between the heat dissipation device and the heat exchange device by the pipes. The bracket structure of carbon element has high thermal conductivity, so as to improve the heat conduction efficiency. The manufacturing method for thermal conduction material can be made with chemical vapor deposition, physical vapor deposition, melting or the other material preparations. The bracket structure of carbon element can be coated on the metal material surface and can also be mixed into the metal material.
Abstract:
This invention discloses a manufacturing method and the structure for a dissipation heat pipe. This dissipation heat pipe includes a hollow closed pipe, a type of fluid and a wick structure. The dissipation heat pipe is often used in conducting the heat from a chip. The dissipation heat pipe can be made of a special thermal conduction material, including the metal and a bracket structure of carbon element which have high thermal conductivity, so as to improve the heat conduction efficiency. The corresponding manufacturing method for this heat conduction material can be made by chemical vapor deposition, physical vapor deposition, electroplating or the other materials preparation method. The bracket structure of carbon element can coat on the metal surface and can also be mixed into the metal.
Abstract:
This invention discloses a chip heat dissipation system for chip heat dissipation and a manufacturing method and structure of heat dissipation device thereof. The chip heat dissipation system includes a heat dissipation device, a heat exchange device, a pump assembly device and at least two pipes. The heat dissipation device is used for receiving a waste heat from the chip, and the heat dissipation device is composed of a thermal conduction material, including a metal material and a bracket structure of carbon element; the heat exchange device is used for discharging the waste heat; the at least two pipes are used for connecting at least two joints of the heat dissipation device and the heat exchange device; and the pump assembly device is used for circulating a fluid between the heat dissipation device and the heat exchange device by the at least two pipes. The bracket structure of carbon element has high thermal conductivity, so as to improve the heat conduction efficiency. The manufacturing method for the thermal conduction material can be made with chemical vapor deposition, physical vapor deposition, melting or the other materials preparation method. The bracket structure of carbon element can be coated on a surface of the metal material and also can be mixed into the metal material.
Abstract:
This invention discloses a manufacturing method and the structure for a surface coating film on a heat dissipation metal. The surface coating film structure on the heat dissipation metal includes a heat dissipation metal and a thin film. The surface coating film structure on the heat dissipation metal is often used in dissipation the waste heat from the electronic apparatuses. The thin film is composed of a bracket structure of carbon element which has high thermal conductivity, so as to improve the efficiency of heat dissipation of the heat dissipation metal. The corresponding manufacturing method for the thin film can be made with chemical vapor deposition, physical vapor deposition or the other material preparation methods.
Abstract:
A circuit for suppressing electromagnetic interference (EMI) and operation method thereof is provided. Interfering signals captured or coupled from the motherboard are transmitted to the phase-shifter for shifting the phase of the signals. The interfering signals with phase shifted are outputted and coupled to the ground layer or the power-supply layer to offset EMI noise thereof. Since merely additional space for the phase shifter is reserved on the motherboard, EMI effect is eliminated and time and cost for rerouting the circuit is thus reduced.
Abstract:
A multi-layer circuit board includes first, second, third, fourth and fifth insulating substrates, first, second, third and fourth signal wiring layers, a ground wiring layer and a power wiring layer. The insulating substrates and the wiring layers are press-bonded to each other to form the circuit board with a thickness of about 1.0 mm. Each of the first and fifth insulating substrates has a thickness ranging from 5.225 to 5.775 mil. Each of the second and fourth insulating substrates has a thickness ranging from 7.6 to 8.4 mil. The third insulating substrate has a thickness ranging from 3.8 to 4.2 mil. The first signal wiring layer has a first resistance with respect to the ground wiring layer. The second signal wiring layer has a second resistance with respect to the ground wiring layer and the power wiring layer. The third signal wiring layer has a third resistance with respect to the ground wiring layer and the power wiring layer. The fourth signal wiring layer has a fourth resistance with respect to the power wiring layer. The first, second, third and fourth resistances are within the range of 49.5 to 60.5 ohms.
Abstract:
Disclosed is a transmission line loaded dual-band monopole antenna, which realizes operation in dual bands with a single antenna. The dual-band monopole antenna includes a monopole antenna and a transmission line load. The monopole antenna has a signal feeding terminal and a load connection terminal. The load connection terminal is connected to the transmission line load. The transmission line load includes a core transmission line, an outer circumferential conductor, and a short-circuit section. The core transmission line has an antenna connection terminal and a short-circuit terminal. The antenna connection terminal is connected to the load connection terminal of the monopole antenna. The outer circumferential conductor circumferentially surrounds and is spaced from the core transmission line and the outer circumferential conductor has an open terminal and a short-circuit terminal. The opening of the open terminal of the outer circumferential conductor faces the antenna connection terminal of the core transmission line so that the outer circumferential conductor forms an open structure facing the monopole antenna.