Abstract:
An antistatic apparatus selectively coupled to an electrical component having a first end and a second end is proposed in the invention. The antistatic apparatus includes a first soldering portion, a second soldering portion, a first discharging portion and a second discharging portion. The first soldering portion selectively connected to the first end of the electrical component. The second soldering portion selectively connected to the second end of the electrical component. The first discharging portion connected to the first soldering portion and rotated clockwise for an angle. The second discharging portion connected to the second soldering portion and rotated counter-clockwise for the angle to provide a discharge path corresponding to the first discharging portion, electrostatic current of the first soldering portion being discharged into the second soldering portion through the discharge path.
Abstract:
A circuit structure for modifying characteristic impedance by using different reference planes is provided. The structure comprises an analog signal line, a digital signal line, a reference plane for analog signals and a reference plane for digital signals. Wherein, the line width of the analog signal line is the same as that of the digital signal line. In addition, the distance between the analog signal line and the analog signal reference plane is longer than the distance between the digital signal line and the digital signal reference plane. Accordingly, the characteristic impedance mismatch during signal transmission can be solved and the quality of signal transmission can be improved.
Abstract:
A circuit structure for modifying characteristic impedance by using different reference planes is provided. The structure comprises an analog signal line, a digital signal line, a corresponding reference plane for analog signals and a corresponding reference plane for digital signals. Wherein, the line width of the analog signal line is the same as that of the digital signal line. In addition, the distance between the analog signal line and the corresponding analog signal reference plane is longer than the distance between the digital signal line and the corresponding digital signal reference plane. Accordingly, the characteristic impedance mismatch during signal transmission can be solved and the quality of signal transmission can be improved.
Abstract:
An antistatic apparatus selectively coupled to an electrical component having a first end and a second end is proposed in the invention. The antistatic apparatus includes a first soldering portion, a second soldering portion, a first discharging portion and a second discharging portion. The first soldering portion selectively connected to the first end of the electrical component. The second soldering portion selectively connected to the second end of the electrical component. The first discharging portion connected to the first soldering portion and rotated clockwise for an angle. The second discharging portion connected to the second soldering portion and rotated counter-clockwise for the angle to provide a discharge path corresponding to the first discharging portion, electrostatic current of the first soldering portion being discharged into the second soldering portion through the discharge path.
Abstract:
A circuit structure for modifying characteristic impedance by using different reference planes is provided. The structure comprises an analog signal line, a digital signal line, a corresponding reference plane for analog signals and a corresponding reference plane for digital signals. Wherein, the line width of the analog signal line is the same as that of the digital signal line. In addition, the distance between the analog signal line and the corresponding analog signal reference plane is longer than the distance between the digital signal line and the corresponding digital signal reference plane. Accordingly, the characteristic impedance mismatch during signal transmission can be solved and the quality of signal transmission can be improved.
Abstract:
A circuit for suppressing electromagnetic interference (EMI) and operation method thereof is provided. Interfering signals captured or coupled from the motherboard are transmitted to the phase-shifter for shifting the phase of the signals. The interfering signals with phase shifted are outputted and coupled to the ground layer or the power-supply layer to offset EMI noise thereof. Since merely additional space for the phase shifter is reserved on the motherboard, EMI effect is eliminated and time and cost for rerouting the circuit is thus reduced.