Abstract:
This invention relates to a miniature silicon capacitive microphone having a perforated backplate supported on a substrate, a shallowly corrugated and perforated diaphragm that is suspended above said backplate and said suspended shallowly corrugated and perforated diaphragm is fully clamped and anchored on the said substrate at the edge of said diaphragm. Said perforated backplate is isolated electrically from said substrate by a layer of dielectric material. Said suspended shallowly corrugated diaphragm has a plurality of perforation holes to allow the passage of slow varying ambient pressure, and to equalize the barometric pressure in and out of the back cavity.
Abstract:
A data synchronization system and method. The method includes that when a change happens in a source application, data is collected from a source application based on a target application subscribing the source application and collection data is transmitted to the target application or is directly inserted to target database. The system includes data collection unit and distribution unit. The present invention may realize synchronization on demand, simultaneously reduce greatly synchronous data quantity, decrease network load, and guarantee smoothness and stabilization of network. The present invention applies to data synchronization of enterprise internal/external data systems, telecommunication networks, etc.
Abstract:
This invention relates to a micromachined microfluidics diagnostic device that comprises one or multiple assaying channels each of which is comprised a sample port, a first valve, a reaction chamber, a second valve, a fluid ejector array, a third valve, a buffer chamber, a capture zone and a waste chamber. Each of these device components are interconnected through microfluidic channels. This invention further relates to the method of operating a micromachined microfluidic diagnostic device. The flow of fluid in the microchannels is regulated through micromachined valves. The reaction of sample analytes with fluorescent tags and detection antibodies in the reaction chamber are enhanced by the micromachined active mixer. By ejecting reaction mixture onto the capture zone through micromachined fluid ejector array, the fluorescent tagged analytes bind with capturing antiodies on capture zone. The fluid ejector array further ejects buffer fluid to wash away unbound fluorescent tags.
Abstract:
This invention relates generally to a micromachined acoustic transducer that has a scalable array of sealed cavities and perforated members forming capacitive cells that convert the electrical signal to acoustic signal or vice versa. It also relates to the method and more particularly to a micromachined acoustic transducer which includes a plurality of micromachined membranes and perforated members forming capacitive cells and more particularly to an acoustic transducer in which the capacitive cells are connected in a scalable array whereby electrical signals are applied to the said array and converted to acoustic signals. The transducer can either be used as an acoustic actuator or a microphone.
Abstract:
The present invention relates to an acoustic transducer that includes one or more capsules, side walls and a backing plate. Each capsule contains a cavity formed by the side walls and a plurality of film stacks. Each film stack has one or more membranes that can be a piezoelectric layer. Two or more of the film stacks that form the first cavity faces each other. A film stack and the backing plate face each other and form the wall of a second cavity. The transducers of this invention have a broadband response, can radiate sounds uni-directionally, and produce high quality sounds at low frequencies and at high intensities. They can be driven by AC signals. They can be fabricated using conventional integrated circuit manufacturing processes and therefore can be mass produced easily and inexpensively.
Abstract:
The present invention provides a capacitive microphone having a capability of acceleration noise cancelation. The microphone includes (1) a moveable functional membrane comprising a basic functional membrane with an area Ao; and (2) a moveable reference membrane comprising a basic reference membrane. The basic reference membrane has one or more holes through the membrane's thickness, and the moveable reference membrane would be identical to the moveable functional membrane if the basic reference membrane does not have said one or more holes. The total area of said one or more holes is Ah, and a hole density HD is defined as Ah/Ao (%), and HD is in the range of e.g. from 0.012% to 2.647%.
Abstract:
MEMS microphone packages and fabrication methods thereof are disclosed. A MEMS microphone package includes a casing with a conductive part disposed over a substrate, to enclose a cavity. A MEMS acoustic sensing element and an IC chip are disposed inside the cavity. An opening with an acoustic passage connects the cavity to an ambient space. A first ground pad is disposed on a backside of the substrate connecting to the conductive part of the casing through a via hole of the substrate. A second ground pad is disposed on the backside of the substrate connecting to the MEMS acoustic sensing element or the IC chip through an interconnection of the substrate, wherein the first ground pad and the second ground pad are isolated from each other.
Abstract:
A monolithic silicon microphone including a first backplate, a second backplate and a diaphragm displaced between said first backplate and said second backplate. Said first backplate is supported by a silicon substrate with one or more perforation holes. Said second substrate is attached to a perforated plate which itself is supported on said substrate. Said monolithic silicon microphone has integrated signal conditioning circuit, and is said diaphragm, said first backplate, said second backplate, and said signal conditioning circuit are electrically interconnected. Signals from said diaphragm, said first backplate, and said second backplate are fed into said signal conditioning circuit, and are amplified differentially.
Abstract:
MEMS microphone packages and fabrication methods thereof are disclosed. A MEMS microphone package includes a casing with a conductive part disposed over a substrate, to enclose a cavity. A MEMS acoustic sensing element and an IC chip are disposed inside the cavity. An opening with an acoustic passage connects the cavity to an ambient space. A first ground pad is disposed on a backside of the substrate connecting to the conductive part of the casing through a via hole of the substrate. A second ground pad is disposed on the backside of the substrate connecting to the MEMS acoustic sensing element or the IC chip through an interconnection of the substrate, wherein the first ground pad and the second ground pad are isolated from each other.