Abstract:
Process for removing hydrocarbons from a body of water wherein the hydrocarbons are separated from the aqueous phase by selective permeation through a sintered porous filter surface-treated with at least one hydrophobic product, so as to collect the hydrocarbons and remove them from the water without using additional chemical products or products capable of absorbing the hydrocarbons. This allows the body of water to be remediated and at the same time recover the hydrocarbons spilled in a clean and substantially continuous manner. The filter preferably consists of a sintered inorganic material, such as for example a metallic material, a vitreous material, a ceramic material.
Abstract:
A composite structure includes a substrate with pores of a first mean pore size and a coating on at least one surface of that substrate. This coating has pores of a second mean pore size where the first mean pore size is equal to or greater than said second mean pore size. When the pore size of the coating is effective to capture particulate greater than 0.2 micron, the composite may be formed into a filter effective to remove microbes from a fluid medium. One method to form the porous coating on the substrate includes the steps of: (a) forming a suspension of sinterable particles in a carrier fluid and containing the suspension in a reservoir; (b) maintaining the suspension by agitation in the reservoir; (c) immersing the substrate in the reservoir; (c) applying a first coating of the suspension to the substrate; (d) removing the substrate with the applied first coating from the reservoir; and (e) sintering the sinterable particles to the substrate thereby forming a coated substrate.
Abstract:
Methods and devices for isolating nucleic acids from a mixture containing such nucleic acids and extraneous matter are provided. In one embodiment, the method of the invention comprises passing the mixture through a glass frit under conditions effective to separate the nucleic acids from the extraneous matter. In a more specific embodiment, the glass frit is a sintered glass frit.
Abstract:
A ceramic porous body is provided which uses a binder made of a glass that has excellent acid resistance and alkali resistance and which can be used for a long period of time as a filtration filter. The ceramic porous body is formed from ceramic particles that are bonded using a glass binder comprising 5 to 20 mol % of a plurality of metal oxides, selected from the group consisting of Li2O, Na2O, K2O, MgO, CaO, SrO and BaO and containing at least two alkali metal oxides selected from the group consisting of Li2O, Na2O and K2O as an essential component, at least 3 mol % of at least one of ZrO2 and TiO2 as a total amount, and SiO2 and incidental impurities as the balance.
Abstract translation:提供了一种陶瓷多孔体,其使用具有优异的耐酸性和耐碱性的玻璃制粘合剂,并且可以作为过滤器长时间使用。 陶瓷多孔体由使用包含5〜20摩尔%的多种金属氧化物的玻璃粘合剂结合的陶瓷颗粒形成,所述金属氧化物选自Li 2 O 2,Na 2 O, 2 O,K 2 O,MgO,CaO,SrO和BaO,并且含有至少两种选自Li 2 O, 作为必要成分的Na 2 O 2和K 2 O 2,至少3摩尔%的ZrO 2和TiO 2的至少一种, 作为总量的SiO 2和偶氮杂质作为余量。
Abstract:
A filter plate assembly includes a base body, a filter media and a frame. The filter plate assembly can be used in a filter press. The filter media is mounted in either side the base body and is held in place by a frame mounted in face to face contact with the filter media. The filter media is a rigid or semi-rigid structure made from sintered material. The filter sintered material can be a polymer, metal, glass, or a ceramic, and the polymer can be polyvinylchloride (PVC), polyethylene (PE), polyurethane (PU), polyvinyldifluoride (PVDF), polytetrafluro-ethylene (PTFE), or polypropylene (PP).
Abstract:
A microbicidal filter system having superior drop pressure and low complexity is provided, as well as a method for producing the same. The system comprises a plurality of glass beads having pores formed therebetween for the flow of air therethrough. The sintered glass beads are coated in a transition metal oxide and water. An ultraviolet light source is used to cause a photocatalytic reaction between the transition metal oxide and water. Free hydroxyl radicals with microbicidal properties are produced. Urethane foam may be inserted between the glass beads before sintering in order to cause a bimodal pore size distribution, and particulates disposed on the glass beads may be added to alter surface activity.
Abstract:
A method for collecting an aerosolized therapeutic polypeptide of interest, such as recombinant human deoxyribonuclease I (rhDNase), is provided which enables a determination as to the effect aerosolization has on the activity and integrity of the polypeptide. An aerosol of the polypeptide is generated using a nebulizer, for example, and the polypeptide is collected in an inert filter, such as a sintered glass filter. To increase the amount of polypeptide collected, the aerosol is preferably mixed with pre-humidified dilution air at a temperature between about 40.degree. and 55.degree. C. The collected polypeptide is subjected to biochemical activity and integrity analysis compared to the activity and integrity of the control polypeptide which has not been aerosolized.
Abstract:
A composite structure includes a substrate with pores of a first mean pore size and a coating on at least one surface of that substrate. This coating has pores of a second mean pore size where the first mean pore size is equal to or greater than said second mean pore size. When the pore size of the coating is effective to capture particulate greater than 0.2 micron, the composite may be formed into a filter effective to remove microbes from a fluid medium. One method to form the porous coating on the substrate includes: (1) forming a suspension of sinterable particles in a carrier fluid and containing the suspension in a reservoir; (2) maintaining the suspension by agitation; (3) transferring the suspension to an ultrasonic spray nozzle; (4) applying a first coating of the suspension to the substrate; and (5) sintering the sinterable particles to the substrate.
Abstract:
Methods and devices for isolating nucleic acids from a mixture containing such nucleic acids and extraneous matter are provided. In one embodiment, the method of the invention comprises passing the mixture through a glass frit under conditions effective to separate the nucleic acids from the extraneous matter. In a more specific embodiment, the glass frit is a sintered glass frit.
Abstract:
Methods and devices for isolating nucleic acids from a mixture containing such nucleic acids and extraneous matter are provided. In one embodiment, the method of the invention comprises passing the mixture through a glass frit under conditions effective to separate the nucleic acids from the extraneous matter. In a more specific embodiment, the glass frit is a sintered glass frit.