Abstract:
The invention pertains to a process for activating an hydrotreating catalyst comprising a Group VIB metal oxide and a Group VIII metal oxide which process comprises contacting the catalyst with an acid and an organic additive which has a boiling point in the range of 80-500° C. and a solubility in water of at least 5 grams per liter (20° C., atmospheric pressure), optionally followed by drying under such conditions that at least 50% of the additive is maintained in the catalyst. The hydrotreating catalyst may be a fresh hydrotreating catalyst or a used hydrotreating catalyst which has been regenerated.
Abstract:
Methods for rejuvenation of supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, making use of these metals, an organic complexing agent, and optionally an organic additive, are provided. The rejuvenation includes stripping and regeneration of a spent or partially spent catalyst, followed by impregnation with metals and at least one organic compound. The impregnated, regenerated catalysts are dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
Abstract:
A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
The present disclosure provides a Ziegler-Natta catalyst composition comprising a procatalyst, a cocatalyst and a mixed external electron donor comprising a first selectivity control agent, a second selectivity control agent, and an activity limiting agent. A polymerization process incorporating the present catalyst composition produces a high-stiffness propylene-based polymer with a melt flow rate greater than about 50 g/10 min. The polymerization process occurs in a single reactor, utilizing standard hydrogen concentration with no visbreaking.
Abstract:
The invention pertains to a process for activating an hydrotreating catalyst comprising a Group VIB metal oxide and a Group VIII metal oxide which process comprises contacting the catalyst with an acid and an organic additive which has a boiling point in the range of 80-500° C. and a solubility in water of at least 5 grams per liter (20° C., atmospheric pressure), optionally followed by drying under such conditions that at least 50% of the additive is maintained in the catalyst. The hydrotreating catalyst may be a fresh hydrotreating catalyst or a used hydrotreating catalyst which has been regenerated.
Abstract:
A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
Abstract:
A catalyst composition comprises the reaction product of an alkoxide or condensed alkoxide of a metal M, selected from titanium, zirconium, hafnium, aluminium, or a lanthanide, an alcohol containing at least two hydroxyl groups, a 2-hydroxy carboxylic acid and a base, wherein the molar ratio of base to 2-hydroxy carboxylic acid is in the range 0.01-0.79:1. The composition is useful as a catalyst for esterification reactions, especially for the production of polyesters such as polyethylene terephthalate, polytrimethylene terephthalate and polybutylene terephthalate.
Abstract:
The present invention is directed to a method for reactivating a deactivated carbonylation catalyst composition previously used in a carbonylation reaction involving an aromatic hydroxy compound, carbon monoxide and oxygen, so that the re-activated catalyst composition is effective at carbonylating an aromatic hydroxy compound in a subsequent oxidative carbonylation reaction.
Abstract:
The present invention relates to MgCl.sub.2.mROH.nH.sub.2 O adducts, where R is a C.sub.1 -C.sub.10 alkyl, 2.ltoreq.m.ltoreq.4.2, 0.ltoreq.n.ltoreq.0.7, characterized by an X-ray diffraction spectrum in which, in the range of 2.theta. diffraction angles between 5.degree. and 15.degree., the three main diffraction lines are present at diffraction angles 2.theta. of 8.8.+-.0.2.degree., 9.4.+-.0.2.degree. and 9.8.+-.0.2.degree., the most intense diffraction lines being the one at 2.theta.=8.8.+-.0.2.degree., the intensity of the other two diffraction lines being at least 0.2 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and stereospecificity with respect to the catalysts prepared from the adducts of the prior art.