Abstract:
An ion exchange apparatus having a plurality of channels or manifolds used for liquid distribution and collection purposes within an end of a container adjacent to an ion exchange resin bed can be improved by using a check valve permitting flow in one direction to all of the channels as the bed is being employed under "service" conditions to treat water and permitting flow in the opposite direction in less than all of the channels as the bed is being treated with a regenerant solution. Such use of less than all of such panels during the treatment of the bed with the regenerant solution makes it possible to achieve good distribution of a relatively small amount of the regenerant solution and to receive regeneration of the bed utilizing such a comparatively small amount of the regenerant solution.
Abstract:
The present disclosure relates to a process for purifying and concentrating 68Ga isotope produced by the irradiation with an accelerated particle beam of a 68Zn target in solution. The process according to the present disclosure allows for the production of pure and concentrated 68Ga isotope in hydrochloric acid solution. The present disclosure also relates to a disposable cassette for performing the steps of purification and concentration of the process.
Abstract:
A metal ion generator for fluids includes a pipe having an insertion aperture positioned between the fluid inlet and fluid exit, and a conductive member configured to be removably secured in the insertion aperture. The conductive member includes a rigid non-conductive extension and a metal bar. When secured in the insertion aperture, the rigid non-conductive extension positions the metal bar into the direct flow of fluid between the fluid inlet and the fluid exit. A power source applies a voltage to the conductive member causing the metal bar to function as an anode and generate metal ions that are transferred into the fluid. The power supply also connects to a cathode such as the pipe or a second conductive member secured in the insertion aperture.
Abstract:
A monolithic organic porous body includes a continuous macropore structure that includes cellular macropores that overlap to form openings having an average diameter of 20 to 200 μm, the monolithic organic porous body having a thickness of 1 mm or more and a total pore volume of 0.5 to 5 ml/g, an area of a skeleton observed within an SEM image of a section of the continuous macropore structure (in a dry state) being 25 to 50%. A monolithic ion exchanger is produced by introducing an ion-exchange group into the monolithic organic porous body. The monolithic organic porous body and the monolithic ion exchanger are chemically stable, have high mechanical strength, and ensure a low pressure loss when fluid passes through. The monolithic organic porous body and the monolithic ion exchanger may be used as an adsorbent having a large adsorption capacity or an ion exchanger having a large ion-exchange capacity.
Abstract:
The present invention provides a new design for high capacity stationary phases for chromatography, for example, ion chromatography. The stationary phases include a first polymer layer in contact with and at least partially coating the substrate of the stationary phase. The first polymer layer serves as a foundation for the attachment, and in various embodiments, the growth and attachment, of a highly hyperbranched polymer structure, typically based on one or more products of condensation polymerization. Multiple components are of use in forming the first polymer layer and the hyperbranched polymer structure, thereby providing a stationary phase that can be engineered to have a desired property such as ion capacity, ion selectivity, and the like. Exemplary condensation polymers are formed by the reaction of at least one polyfunctional compound with at least one compound of complimentary reactivity, e.g., a nucleophilic polyfunctional compound reacting with an electrophilic compound.
Abstract:
The invention is directed to a method for the removal of mercury and selenium from sulfate-containing waste water. The method may include the following steps: a) a mercury- and selenium-contaminated waste water with a known sulfate concentration is provided, b) barium sulfate (BaSO4) is precipitated from the provided waste water by the addition of a predefined amount of Ba2+ ions to the waste water, c) BaSO4 (if necessary together with other solids) is separated obtaining a low-solid waste water, d) the low-solid waste water is fed to an ion exchanger for the removal of mercury obtaining a waste water with a reduced mercury content, e) selenium and/or selenium compounds are removed from the waste water with the reduced mercury content and f) a sulfate-containing solution or solid is added to the waste water with a reduced selenium and/or selenium compound content in order to precipitate barium sulfate.
Abstract:
A device is provided for performing chemical transformation in a fluid, with a flow distributor having at least one fluid medium inlet, at least one fluid medium outlet, and at least one confinement wherein the chemical transformation is performed; and a means for rotating, rocking, wagging, or oscillating the device. At least one confinement may be equipped with a provision for providing heat, cooling, sound, light or other types of radiation, such provision being contacted to an external source through an actuator shaft. The flow distributor may be provided with sectors connected with the centrally located fluid medium inlet and a designated peripheral fluid medium outlet. The means for rotating, rocking, wagging, or oscillating the device may be an element producing magnetic fields or a shaft mechanically connected to an external actuating device.