Abstract:
To provide acidic electrolyzed water having disinfecting power for a long period of time (for example, six months or more), and a production method for this acidic electrolyzed water. The acidic electrolyzed water has an effective chlorine concentration equal to or greater than 15 ppm, and contains an acid salt of an inorganic acid.
Abstract:
A device, method, and system may recover, treat, and reuse condensate that is produced by climate control equipment. Minerals that are beneficial for both the intended use of the condensate and the formation of persistent ozone containing bubbles may be introduced into the condensate. An ozone containing gas may be introduced in to the condensate.
Abstract:
An apparatus and method for separating, harvesting and primary dewatering microalgae biomass from a microalgae solution by destabilization thereof with addition of kinetic energy thereto is disclosed. The method to overcome the energetic barrier preventing a fluid-solid separation comprises injecting the microalgae solution in an electrolytic system comprising an electrocoagulation reactor generally comprising an anode module and a cathode module, the anodes and the cathode(s) being adapted to be electrically connected to perform electrolysis, thus separating, harvesting and primary dewatering microalgae biomass. Such process is generally achieved by providing a DC electric current, between the anodes and the cathode(s), to perform the separation of the biomass in the solution, in preparation the following process steps of for liquid/solid separation and primary dewatering.
Abstract:
An oxidizer generating apparatus comprising a cylindrical housing and an electrode assembly attached at one end of the housing comprising at least three vertically disposed electrodes, the electrodes being spaced apart so as to define a water flow path between them, the electrodes comprising titanium outer electrodes and at least one inner diamond electrode
Abstract:
A water treatment system is disclosed having electrolytic cell for liberating hydrogen from a base solution. The base solution may be a solution of brine for generating sodium hypochlorite, or potable water to be oxidized. The cell has first and second opposing electrode endplates held apart from each other by a pair of supports such that the supports enclose opposing sides of the endplates to form a cell chamber. One or more inner electrode plates are spaced apart from each other in the cell chamber in between the first and second electrode plates. The supports are configured to electrically isolate the first and second electrode plates and the inner electrode plates from each other. The first and second electrode plates are configured to receive opposite polarity charges that passively charge the inner electrode plates via conduction from the base solution to form a chemical reaction in the base solution as the base solution passes through the cell chamber.
Abstract:
A mobile station and methods are disclosed for diagnosing and modeling site specific effluent treatment facility requirements to arrive at a treatment regimen and/or proposed commercial plant model idealized for the particular water/site requirements. The station includes a mobile platform having power intake, effluent intake and fluid outflow facilities and first and second suites of selectably actuatable effluent pre-treatment apparatus. An effluent polishing treatment array is housed at the station and includes at least one of nanofiltration, reverse osmosis and ion-exchange stages. A suite of selectively actuatable post-treatment apparatus is housed at the station. Controls are connected at the station for process control, monitoring and data accumulation. A plurality of improved water treatment technologies is also disclosed. The modeling methods include steps for analyzing raw effluent to be treated, providing a field of raw effluent condition entry values and a field of treated effluent condition goals entry values, and utilizing said fields to determine an initial treatment model including a selection of, and use parameters for, treatment technologies from the plurality of down-scaled treatment technologies at the facility, the model dynamically and continuously modifiable during treatment modeling.
Abstract:
A water treatment system is disclosed having electrolytic cell for liberating hydrogen from a base solution. The base solution may be a solution of brine for generating sodium hypochlorite, or potable water to be oxidized. The cell has first and second opposing electrode endplates held apart from each other by a pair of supports such that the supports enclose opposing sides of the endplates to form a cell chamber. One or more inner electrode plates are spaced apart from each other in the cell chamber in between the first and second electrode plates. The supports are configured to electrically isolate the first and second electrode plates and the inner electrode plates from each other. The first and second electrode plates are configured to receive opposite polarity charges that passively charge the inner electrode plates via conduction from the base solution to form a chemical reaction in the base solution as the base solution passes through the cell chamber.
Abstract:
A water treatment system is disclosed having an electrolytic cell for liberating hydrogen from a base solution. The base solution may be a solution of brine for generating sodium hypochlorite or potable water to be oxidized. The cell has first and second opposing electrode end plates held apart from each other by a pair of supports such that the supports enclose opposing sides of the end plates to form a cell chamber. One or more inner electrode plates are spaced apart from each other in the cell chamber in between the first and second electrode plates. The supports are configured to electrically isolate the first and second electrode plates and the inner electrode plates from each other. The first and second electrode plates are configured to receive opposite polarity charges that passively charge the inner electrode plates via conduction from the base solution to form a chemical reaction in the base solution as the base solution passes through the cell chamber.
Abstract:
A mobile treatment system is provided for treating contaminates in water, particularly during emergency situations such as natural disasters and planned attacks. The mobile treatment system includes a mobile framework; one or more treatment modules mounted on the mobile framework; a piping system in fluid communication with the one or more treatment modules, said piping system comprising one or more pumps configured to convey water to and from the one or more treatment modules; and at least one power source to provide power to the one or more pumps and one or more treatment modules. The treatment modules may include pre-filtration, chlorination treatment that generates chlorine by electrolysis, activated carbon treatment, and treatment using a disinfecting, silver coated composite material.
Abstract:
A metal ion generator for fluids includes a pipe having an insertion aperture positioned between the fluid inlet and fluid exit, and a conductive member configured to be removably secured in the insertion aperture. The conductive member includes a rigid non-conductive extension and a metal bar. When secured in the insertion aperture, the rigid non-conductive extension positions the metal bar into the direct flow of fluid between the fluid inlet and the fluid exit. A power source applies a voltage to the conductive member causing the metal bar to function as an anode and generate metal ions that are transferred into the fluid. The power supply also connects to a cathode such as the pipe or a second conductive member secured in the insertion aperture.