Abstract:
A composite structure formation method based on an aerosol deposition method by which an aerosol with brittle material fine particles dispersed in a gas is sprayed toward a substrate to form a structure made of the brittle material fine particles, the composite structure formation method includes: storing a plurality of controlled particles in a storage mechanism, the controlled particle being an assembly packed with a plurality of particles including the brittle material fine particles; supplying the controlled particles from the storage mechanism to an aerosolation mechanism; disaggregating the supplied controlled particles in the aerosolation mechanism to form an aerosol; and spraying the aerosol toward the substrate to form a composite structure having the structure and the substrate.
Abstract:
Means for dispensing a powdery colouring substance onto the surface of a mix (14) comprising stone, stone-like, glass or ceramic material. The means comprise at least one dispensing device (28) for containing and dispensing a powdery colouring substance (11) and at least one spreading device (30). The spreading device (30) comprises at least one moving perforated plate (100) which receives a metered amount of said colouring substance (11) from the dispensing device (28) and distributes it over the surface of the mix (14).
Abstract:
The powder coating apparatus is provided with a coating booth into which a ground-connected object to be coated can be delivered and a plurality of coating tools respectively provided on the coating booth and adapted to discharge electrically charged powder coating materials onto the object to be coated. At least two of the coating tools are disposed on walls of the coating booth such that discharge openings thereof for discharging the powder coating materials are opposed to each other. The respective opposed discharge openings simultaneously discharge the powder coating materials onto the object to be coated. The powder coating materials, which are discharged from one of the at least two coating tools and are diffusing in the interior portion of the coating booth, are moved up to the object to be coated by a delivering air discharged together with the powder coating materials from the other of the two coating tools.
Abstract:
A capsule dusting system is designed to expose capsules to a dusting agent in a controlled manner. The system incorporates a tumbling basket positioned within an enclosure. The tumbling basket is loaded with capsules and is rotatably connected to a drive shaft. A dust injection system meters the dusting agent into the dust injection system. The dust injection system may include a dusting injector that translates between two positions. At one position, the dusting injector is loaded with dusting agent by a powder supply system. At the other position, the dusting injector is positioned to inject the dusting agent into the tumbling basket. A gas is fluidly connected to the dusting injector to cause the dusting agent to disperse into the tumbling basket. The enclosure contains the dusting agent within the system to reduce the environmental, health, and safety hazards associated with airborne particulates.
Abstract:
A particle cluster for an aerosol deposition method, the particle cluster includes: an assembly packed with a plurality of fine particles including brittle material fine particles, the particle clusters having a spatula angle of 46.2° or less.
Abstract:
A powder-fluidizing apparatus is presented which is applicable to feeding ultra-fine and nano-size powders, and powders with a broad particle size distribution, in a uniform manner over a long period of time. Generally, this is accomplished by using a rotating brush to sweep the powder through holes in a removable sieve plate, which breaks up agglomerated particles in the powder and controls the powder feed rate. The powder then drops from the holes into a funnel, where it is fluidized by being entrained into a carrier gas, and then flows through the funnel out of the apparatus to an applicator. The funnel surface is vibrated to avoid powder build-up on the surface that can break loose and cause pulses of increased material in the powder flow. Ultrasonic waves are introduced into the funnel to break up any agglomerated particles remaining in the powder before it reaches the applicator.
Abstract:
The invention relates to an apparatus and process for solid-state deposition and consolidation of powder particles entrained in a subsonic or sonic gas jet onto the surface of an object. Under high velocity impact and thermal plastic deformation, the powder particles adhesively bond to the substrate and cohesively bond together to form consolidated materials with metallurgical bonds. The powder particles and optionally the surface of the object are heated to a temperature that reduces yield strength and permits plastic deformation at low flow stress levels during high velocity impact, but which is not so high as to melt the powder particles.
Abstract:
An apparatus for applying powder coating material onto large objects such as automotive, truck or other vehicle bodies includes a powder spray booth defining a controlled area within which to apply powder coating material onto the vehicle bodies, a powder kitchen located at a remote position from the powder spray booth, and, a number of feed hoppers located proximate the booth which receive powder coating material from the powder kitchen and supply it to automatically or manually manipulated powder spray guns associated with the booth. Oversprayed powder coating material is removed from the booth interior by a powder collection and recovery system which transmits the oversprayed powder back to the powder kitchen for recirculation to the powder spray guns.
Abstract:
A system (1) for the precisely and accurately controlled delivery and collection of aerosolized masses. The system (1) includes an aerosol generator (100), an upstream electro-optional aerosol mass concentration sensor (200) past which aerosols are transported at a known upstream volumetric flow rate, a deposition zone (300) within which aerosols are collected on or within a media, and a downstream electro-optical aerosol mass concentration sensor (201) past which aerosols uncollected in the deposition zone (300) are transported at a known downstream volumetric flow rate. The net mass of aerosols collected in the deposition zone (300) is determined by integrating over time the product of mass concentration measured by the upstream electro-optical sensor (200) and the upstream volumetric flow rate minus the product of mass concentration measured by the downstream electro-optical sensor (201) and the downstream volumetric flow rate. The aerosol generator (100) includes a metering pocket into which powder is loaded, and a fluidizing jet which produces an expansive bolus that is directed into a mixing chamber. The deposition zone (300) collects aerosols by filtration, impaction or electrostatic attraction.
Abstract:
A fluxer applies powdered flux to an object. The fluxer includes an enclosure that defines a chamber where the object is fluxed. The enclosure includes an inlet for receiving the object into the chamber prior to application of the flux and an outlet for discharging the object from the chamber after the flux has been applied. A conveyor extends through the enclosure for traversing the object into and out of the chamber. The fluxer also includes a hopper for storing the flux and an applicator in fluid communication with the hopper for applying the flux to the object. A flux recovery system is in fluid communication with the chamber to introduce and maintain a negative pressure within the chamber. As a result, excess flux is retained within the enclosure. This excess flux can then be recovered and recycled to the hopper.