Abstract:
An entertainment system control arrangement for a motor vehicle includes a graphical LCD with a configurable touch screen. The graphical LCD is disposed on the steering wheel. A processor is communicatively coupled to the graphical LCD. The processor prompts a user to select a function to assign to the configurable touch screen. The processor assigns the selected function to the configurable touch screen.
Abstract:
A user interface for a vehicle is disclosed. The user interface comprises a vehicle panel having a proximity sensor, a first photoluminescent portion and a second photoluminescent portion. The user interface further includes a first light source configured to selectively activate the first photoluminescent portion and a second light source configured to selectively activate the second photoluminescent portion. The second photoluminescent portion is configured to reveal a symbol in a backlit configuration in response to the activation of the second light source.
Abstract:
A display apparatus in a motor vehicle has at least one display element, which can be used to display at least one value and which has at least one light-emitting element for adjusting a display brightness for the display element. A sensing device has, a sensing element for sensing an ambient brightness for surroundings of the display element. The display brightness can be adjusted by the light-emitting element on the basis of the sensed ambient brightness. The sensing device is designed to prompt at least one function of the motor vehicle that is different than the adjustment of the display brightness when a change in the ambient brightness is sensed. A method operates such a display apparatus.
Abstract:
A system for use in a vehicle, including a steering element situated opposite a driver seat in a vehicle, the steering element including a plurality of proximity sensors encased in the periphery of the steering element operable to detect hand gestures along the outer periphery of the steering element, an interactive deck housed in the vehicle, for providing at least one of radio broadcast, video broadcast, audio entertainment, video entertainment and navigational assistance in the vehicle, and a processor housed in the vehicle, coupled with the proximity sensors and the deck, operable to identify the hand gestures detected by the proximity sensors, and to control the deck in response to thus-identified hand gestures.
Abstract:
A multi-dimensional track pad is described that acts as human-machine interface (HMI). Inputs to the HMI can be made not only using the tradition two-dimensional (X-Y) inputs of a track pad, but also a third dimension, force, and even a fourth dimension, time. Tactile or audible feedback to the inputs can be provided. Methods of using the HMI to control a system are described as well as a track pad system that utilizes the HMI in communication with a processor.
Abstract:
A system for use in a vehicle, including a steering element situated opposite a driver seat in a vehicle, the steering element including a plurality of proximity sensors encased in the periphery of the steering element operable to detect hand gestures along the outer periphery of the steering element, an interactive deck housed in the vehicle, for providing at least one of radio broadcast, video broadcast, audio entertainment, video entertainment and navigational assistance in the vehicle, and a processor housed in the vehicle, coupled with the proximity sensors and the deck, operable to identify the hand gestures detected by the proximity sensors, and to control the deck in response to thus-identified hand gestures.
Abstract:
A system for use in a vehicle, including a steering element situated opposite a driver seat in a vehicle, the steering element including a plurality of proximity sensors encased in the periphery of the steering element operable to detect hand gestures along the outer periphery of the steering element, an interactive deck housed in the vehicle, for providing at least one of radio broadcast, video broadcast, audio entertainment, video entertainment and navigational assistance in the vehicle, and a processor housed in the vehicle, coupled with the proximity sensors and the deck, operable to identify the hand gestures detected by the proximity sensors, and to control the deck in response to thus-identified hand gestures.
Abstract:
A control panel comprising a cover that is equipped with at least one zone for detecting tactile contact forming a control button, in which a force sensor comprising a pressure-sensitive zone is arranged between the cover and the support so as to detect actuation of the control button, the force of the tactile contact being transmitted axially to the sensitive zone via a spacer plate made of an elastically compressible material that is inserted between the sensor and the cap, characterized in that the internal surface of the cap comprises a series of protruding elements that are distributed over the internal surface of the cap opposite the sensitive zone so as to form a number of regularly distributed zones of localized overpressure.
Abstract:
An in-vehicle operation apparatus has an operation switch, a candidate selection operation unit, and a command assignment operation unit, all of which are operable by a user. The operation switch may control multiple in-vehicle devices based on a desired command assigned thereto. In particular, the candidate selection operation unit selects a plurality of candidate commands from among a plurality of commands respectively for in-vehicle devices. The command assignment operation unit selects and assigns the desired command from among the plurality of candidate commands to the operation switch. Accordingly, the operation switch controls the in-vehicle device associated with the desired command. Thus, the apparatus reduces the amount of operation switches required and allows the user to easily select and assign a command to the operation switch for controlling a desired in-vehicle device.
Abstract:
An input apparatus for in-vehicle devices is easy to use and facilitates recognizing the position of fingertips. For this, the input apparatus includes a control unit including a recess allowing fingers to be inserted thereinto and having a control surface on an inner side wall thereof, a control switch disposed on the control surface, and a camera horizontally photographing the fingers inserted into the recess; and a display unit displaying an image of the fingers photographed by the camera to overlay on a control screen.