Abstract:
A vehicle turning motion control apparatus includes a turning condition sensing section to sense a turning condition of the vehicle; and a vehicle deceleration control section to initiate a deceleration control to decelerate the vehicle when the turning condition exceeds a deceleration start threshold. The control apparatus further includes a running state sensing section configured to sense a running state of the vehicle, and a threshold setting section configured to set the deceleration start threshold in accordance with the running condition.
Abstract:
A method for operating a brake system of a motor vehicle, prefilling taking place to at least partially overcome an air gap of one wheel brake or a plurality of wheel brakes if the air gap of at least one wheel brake is increased, in particular as a result of dynamic influences of the vehicle motion.
Abstract:
A method for brake pressure apply in a hydraulic brake system includes commanding a cage clearance reduction phase and commanding a wheel control phase subsequent to the cage clearance reduction phase. Accordingly, the cage clearance is reduced prior to entering the wheel control phase. A method for cage clearance reduction in a hydraulic brake system for roll stability control is also provided.
Abstract:
A method of operating a hydraulic safety system 38 includes determining a relative roll angle, determining a relative a slip angle, determining a yaw rate and determining a pressure build rate for the hydraulic safety system 38 in response to a relative roll angle, the yaw rate, slip angle, and yaw rate. The method further includes determining a precharge pressure level in response to the relative roll rate, the slip angle and the yaw rate and controlling the safety system 38 in response to the precharge pressure level.
Abstract:
The present invention relates to a method for improving the control behavior and stability under a thermal load of an automotive vehicle control system with brake intervention, such as TCS, BTCS, ESP, etc. In order to reduce the thermal stress on the brake system in a control system without engine interface, some of the control functions that may involve critical thermal loads on the brake system are at least temporarily disabled or allowed only to a limited extent in defined control situations.
Abstract:
A method for sensitizing the roll signal for a rollover control system (18) is provided. A sensitizing method for controlling a vehicle includes when the relative roll angle reaches a threshold, initiating a wheel departure angle determination, boosting control effort and controlling a safety system (38) in response to the computed roll angles.
Abstract:
In a vehicle braking system for stabilizing vehicle behavior: a motor control unit determines whether or not the motor control unit receives a drive forbid signal from a yaw-moment control unit, when the motor control unit receives a drive instruction signal from a vehicle-behavior stabilization control unit. The motor control unit receives the drive forbid signal when the yaw-moment control unit performs yaw-moment control. The motor control unit forbids prepressurization using a slave cylinder, when the motor control unit receives the drive forbid signal.
Abstract:
A method of controlling stability of a vehicle comprises monitoring vehicle information with an electronic control unit. An approaching unstable driving condition is detected from the vehicle information with an electronic control unit. A signal is sent from the electronic control unit to at least one vehicle system to apply at least one proactive vehicle stability control action prior to the occurrence of the unstable driving condition.
Abstract:
The invention relates to a method and a device for performing open-loop or closed-loop control of the driving stability of a vehicle and for avoiding collisions with an object which is located in the traffic lane. The invention also relates to a closed-loop driving stability controller. The method according to aspects of the invention comprises: determining based on environmental signals whether a critical situation in terms of driving dynamics, in particular an imminent collision, exists, calculating an avoidance path if a critical situation in terms of driving dynamics exists, determining based on a plurality of input variables pressures for individual brakes of the vehicle, and activating preparatory measures of the driving dynamics regulator, in particular dynamic switching over of closed-loop control parameters if the critical situation in terms of driving dynamics exists. The device and the closed-loop driving stability controller are suitable for carrying out the method.
Abstract:
Disclosed is a device for influencing the driving dynamics of a vehicle with an electronic brake system. The device includes a brake actuator for adjusting a brake torque at least one wheel brake of the vehicle. The brake torque can be determined in a torque distributing device according to a yaw torque requirement. A first control unit can be activated in the presence of a critical driving condition as is used to determine a first yaw torque requirement due to driving dynamics control. A management device (12) has a second control unit, which can be activated in the presence of a subcritical driving condition, and a second yaw torque requirement (R:D_GM) can be determined by the second control unit due to driving dynamics control, and the second yaw torque requirement (R:D_GM) can be sent to the torque distributing device (20), and an activated state of the first control unit a signal (I:EBS_Status; R: D_GM; R:[S1, S2, . . . ]) can be sent from the electronic brake system (2) to the management device (12), which causes deactivation of the second control unit.