Abstract:
A high-pressure mine door assembly for use in mine shafts, the door assembly configured with opposing wings, which enable the door assembly to open and close quickly. The assembly includes a major hub and a minor hub positioned at or above the cap of the door assembly and coupled together via a connecting bar. A drive mechanism is coupled to the cap and the connecting bar, which facilitates the opening and closing of the wings of the door assembly. The door assembly is configured in a 12-6 pitch orientation, requiring only a ⅔ rotation of the wings to fully open the door assembly to. Such a configuration also negates the effect of air pressure on operation of the door assembly, regardless of the direction of the airflow, with the airflow assisting one wing in opening and the other in closing.
Abstract:
An actuator system for use in selectively engaging an input to an output. The actuator system includes an input sub-system having an input component configured to connect to an input element which is in turn connected to a work source. The actuator system also includes an output sub-system being connectable to the input sub-system for receiving work from the work source via the input sub-system. The actuator system further includes an actuator sub-system having an active material and an actuating component. The actuator sub-system is configured so that the active material, when activated, causes the actuating component to move from a first state to a second state to disengage the input and output sub-systems.
Abstract:
A mine door control system and method that uses sensor input from a plurality of sensors corresponding to at least one of a position of at least one associated opposing wing mine door and a path through the at least one associated mine door to determine at least one predefined action in accordance with received sensor input. A control command is then communicated a drive mechanism associated with the at least one associated mine door, the control command including instructions for operating the drive mechanism in accordance with the at least one predefined action.
Abstract:
A system, method, and computer storage configured for determining period-ending positions of multiple parts movable by select actuation of corresponding active materials. The operations include receiving, from a work-source sensor, work-source input indicating a distance moved by the work source and a direction of the movement, and determining, based on the work-source input and a first and second status histories, corresponding to a first and a second part, respectively, first and second distances travelled by the parts, respectively. Operations also include calculating, based on the first and second distances determined and first and second period-starting positions, corresponding to the first and second parts, respectively, first and second period-ending positions for the first and second parts, respectively.
Abstract:
A mine door control system and method that uses sensor input from a plurality of sensors corresponding to at least one of a position of at least one associated opposing wing mine door and a path through the at least one associated mine door to determine at least one predefined action in accordance with received sensor input. A control command is then communicated a drive mechanism associated with the at least one associated mine door, the control command including instructions for operating the drive mechanism in accordance with the at least one predefined action.
Abstract:
A high-pressure mine door assembly for use in mine shafts configured with opposing wings, which enable the door to open and close quickly. The assembly includes a major hub and a minor hub positioned at or above the cap of the door assembly and coupled together via a connecting bar. A drive mechanism is coupled to the cap and the connecting bar, which facilitates the opening and closing of the wings of the door. The door assembly is configured in a 12-6 pitch orientation, requiring only a ⅔ rotation of the wings of the door assembly to fully open the door. Such a configuration also negates the effect of air pressure on operation of the door, as regardless of the direction of the airflow, with the airflow assisting one wing in opening and the other in closing.
Abstract:
An exemplary apparatus includes a modular, self-contained spring cage and a spindle. The spring cage includes a housing and a clock spring mounted in the housing, and the clock spring includes a first leg and a second leg. The spindle extends through the spring cage, and is rotatable from a home position about a longitudinal axis in each of a first rotational direction and a second rotational direction. Rotation of the spindle from the home position in the first rotational direction causes pivoting of the first leg while the second leg remains stationary, thereby causing the clock spring to urge the spindle to return to the home position. Rotation of the spindle from the home position in the second rotational direction causes pivoting of the second leg while the first leg remains stationary, thereby causing the clock spring to urge the spindle to return to the home position.
Abstract:
A collapsible gate includes a first side column, a second side column, a collapsible barrier assembly, a receiver, and a powertrain. The collapsible barrier assembly is disposed between the first and second side columns. The collapsible barrier is configured to transition between a collapsed position and a raised position. The receiver is disposed between the first side column and the second side column and is configured to receive at least a portion of the collapsible barrier assembly when it is in the collapsed position. The receiver has a first end coupled to the first lower portion of the side column and an opposite second end coupled to the second lower portion of the second side column. The powertrain is configured to transmit mechanical power to the collapsible barrier assembly to facilitate transitioning the collapsible barrier assembly between the collapsed position and the raised position.
Abstract:
Disclosed is a motor unit including: an electric motor; a motor housing (6) configured to accommodate the electric motor; and a control substrate (70) including a sensor element (72S) to detect a position of an inner rotor of the electric motor in a rotational direction. The motor housing (6) includes a substrate accommodating portion (80) configured to accommodate at least a portion of the control substrate (70); a positioning portion (81) that is formed in the substrate accommodating portion (80), and positions the control substrate (70); and a screw configured to fix a stator of the electric motor to the positioning portion (81).
Abstract:
In at least some implementations, a cable control system includes a spool on which a portion of a cable may be taken up and released, an input shaft coupled to the spool, and a motor coupled to the input shaft to drive the input shaft and spool in a first direction to take up cable on the spool and in a second direction to release cable from the spool. The control system also has two clutches that allow rotation of the spool without corresponding rotation of the motor. Each clutch may have a first member coupled to the input shaft and a second member coupled to the spool and relative rotation between the first and second members of the clutch allows rotation of the spool relative to the motor or input shaft.