Abstract:
A household dishwasher includes a washing container having a loading opening, a door, an electrical drive device configured to move the door between a closed position, in which the door closes the loading opening, and an open position, in which the washing container is accessible from outside, and a control unit configured to identify a manual movement of the door performed by an operator in a direction of movement by detecting a characteristic variable of the drive device and to move the door further in the direction of movement via the drive device as a result of the manual movement of the door by the operator.
Abstract:
The present invention provides a control device at an opening/closing section of a vehicle and a method for controlling the opening/closing section of the vehicle for controlling a motor so that pinch at the opening/closing section is determined accurately while its constitution is very simple.The control device includes a pinch determination device that is mounted to a motor for opening/closing an opening/closing section of a vehicle and determines pinch of a foreign matter based on a change in the rotation number of the motor, and demagnetization pulse applying means for supplying power with reverse polarity to motor in a pulse-like manner at completion of the opening/closing.
Abstract:
Modular, powered closure apparatus for installation as a unit into an opening of a building. The apparatus includes a rigid framework to be secured to the building and closure panels, one of which is affixed to the framework and the other of which is slidable in the framework. The framework includes a housing which accommodates an electric motor and transmission means extending between the motor and second closure panel to selectively move the second closure panel between open and closed positions.
Abstract:
In an opening/closing body control device, catching determination part (15) determines whether or not a catching in an opening/closing body has occurred based on a value of current that flows in a motor; a plurality of sensors (51 to 53) disposed to be shifted by predetermined electrical angles detect positions of magnetic poles of the motor (40); a counterclockwise pattern storage unit (14) stores a counterclockwise pattern which is a pattern corresponding to outputs of the plurality of sensors (51 to 53) and a predetermined shift in the electrical angles; and drive command part (16) controls the drive circuit (30) using a clockwise pattern or the counterclockwise pattern based on the outputs of the plurality of sensors (51 to 53), and in a case where the catching determination part (15) determines that a catching has occurred, controlling the drive circuit (30) in a predetermined pattern for eliminating the catching.
Abstract:
A vehicle window driving mechanism and a vehicle utilizing the vehicle window driving mechanism are provided. The vehicle window driving mechanism includes a box, a motor mounted to the box, and a transmission assembly mounted to the box and connected to the motor. The motor is a single phase permanent magnet brushless motor. The vehicle window driving mechanism has a relatively smaller size.
Abstract:
The motor control device is an electric motor control device including a control unit (control circuit unit) configured to output a forward-rotation command or a reverse-rotation command to the electric motor. The control unit includes a position detector (door opening/closing information generation circuit) configured to detect a rotation direction of the electric motor when a detection signal is input from a rotation sensor (Hall integrated circuit (IC)), which detects the rotation of the electric motor, while no current is supplied to the electric motor. The control unit includes an electric current supply device (pulse width modulation (PWM) command generation circuit) configured to supply an electric current by which the electric motor is rotated in an opposite direction to the detected rotation direction by increasing an electric current supply duty ratio every time the detection signal is switched.
Abstract:
A locking arrangement for a door system of a transit vehicle includes a combination of a lock mechanism and an electromagnetic brake. The lock mechanism enables positive locking of at least one door but does not require substantial contact between moving and stationary lock elements. The lock mechanism is connected with the manual release means for door opening during an emergency. The electromagnetic brake maintains door seal compression in the closed and locked condition which improves sealing capabilities and provides for reliable lock mechanism operation. Such combination provides locking redundancy and meets various requirements regarding annunciation and manual release operation.
Abstract:
A method and device for determining torque applied to a motor of an automotive power window system includes a motor having a rotor mounted on a rotor shaft wherein the rotor and rotor shaft move linearly along an axial length of the rotor shaft in response to an applied torque. A ring magnet is mounted on the rotor shaft for generating a magnetic field as the rotor shaft rotates. A sensor, in communication with the ring magnet, senses a strength of the magnetic field based on a linear position of the ring magnet in relation to the sensor and generates a proportional voltage signal. A control circuit receives the voltage signal and detects a torque applied to the motor in response thereto.
Abstract:
A garage door operator is disclosed to have a front coupling for a threaded screw of the operator and the rotor of the motor. The coupling includes a first coupling device that is a unitary coupling member with opposing recesses for receiving each of the rotor shaft and an end portion of the screw. The unitary coupling member thereby connects the screw to the motor for torque transmission from the motor. The second coupling device includes a thrust containment device that is supported on the screw, and an intermediate assembly disposed between the thrust containment device and an end portion of the guide rail of the door operator. A retainer component of the intermediate assembly restricts expansion of the thrust containment device.
Abstract:
A ring gear (82) of a planetary gear speed reducer (80) is fixed to a casing (31) provided with a core metal (31) fixed to a vehicle panel via a rubber damper (92). Therefore, the driving unit can be reduced in size through adoption of a speed reducer (80) formed of gears (82) made of spur gears, and the rubber dumper (92) can suppress low frequency vibrations which are transmitted from the speed reducer (80) to the vehicle panel. Therefore, the vehicle body of the vehicle having a low characteristic frequency is prevented from resonating with the incoming low frequency vibrations to generate noises which are transmitted to the vehicle interior, and which give an occupant an unpleasant feeling.