Abstract:
An adjustable torque hinge includes a set hinge, a torque providing unit and a torque adjusting unit. The set hinge unit couples a first and second wing plate with a pivot pin. The first and second wing plates forms a pin joint with a first sleeve and second sleeve. The torque providing unit includes a torque spring to provide turn back recovery. A torque adjusting unit has a torque adjustment member. The first sleeve includes a first cam, and the torque adjustment member includes a second cam which couples with the first cam to drive the torque adjustment member to the torque spring. Conversion between the first and second sleeves enables the bearing hinge to be used in both directions, accumulating force both in normal and reverse directions to adjust the torque force for opening and closing operations.
Abstract:
An opening device for a flap of a vehicle, in particular for a rear flap, pivotable about a horizontal pivot axis on the upper edge of an opening in the vehicle body from a closed position into an open position having a gas-filled spring coupled to the body by the free end of its piston rod at a distance from the pivot axis and coupled to the flap by its pressure tube at a distance from the pivot axis. The gas-filled spring in the exload direction applies a force to the flap in the opening direction. Furthermore, an actuator can act on the flap in the opening direction. The actuator is an energy accumulator which, applies a force to the flap during its opening stroke from the closed position until a relaxed position of the energy accumulator is reached.
Abstract:
A door system (10) including, a door (D) movably mounted on a track assembly (15), a counterbalance system (20) connected to the door and having at least one spring (25), a tool adapter (26) proximate at least one end of the counterbalance system, a detachable winding assembly (30) adapted to selectively engage and selectively rotate the tool adapter to adjust tensioning of the spring, and a locking assembly (36) interacting with the counterbalance system to maintain a selected tensioning of the counterbalance system upon detaching the winding assembly from the tool adapter.
Abstract:
A door closer assembly is provided, including a valve regulating an amount of hydraulic fluid that flows through the valve. The amount of hydraulic fluid flowing through the valve controls a force generated by the door closer assembly on a door. A first sensor measures an angular position of the door, and a second sensor measures an angular position of the valve. The angular position of the valve determines the amount of hydraulic fluid flowing through the valve. A controller controls the adjustment of the valve based on the angular position of the door and the angular position of the valve.
Abstract:
A partition panel assembly includes a stationary panel member having an exposed surface including a longitudinally-extending, downwardly-exposed channel, and a door member slidably supported from the stationary panel member for movement between a closed position and an open position. The partition panel assembly also includes a door member support assembly comprising a roller assembly operably coupled to the door member, and a support member having an upwardly-extending arm received within the channel of the stationary panel member, a downwardly-extending arm abutting the exposed surface of the stationary panel member, and a track member supporting the roller of the roller assembly such that the door member is slidably supported from the stationary panel member. The partition panel assembly further includes a decelerator assembly including a spring member secured to the track member and adapted to frictionally engage the door member when the door member is proximate the open or closed position, thereby decreasing a velocity of the door member prior to the door member reaching a fully opened or closed position.
Abstract:
A door system (10) including, a door (d) movably mounted on a track assembly (15), a counterbalance system (20) connected to the door and having at least one spring (25), a tool adapter (26) proximate at least one end of the counterbalance system, a detachable winding assembly (30) adapted to selectively engage and selectively rotate the tool adapter to adjust tensioning of the spring, and a locking assembly (36) interacting with the counterbalance system to maintain a selected tensioning of the counterbalance system upon detaching the winding assembly from the tool adapter.
Abstract:
A spring tensioning mechanism incorporating a frame having a substantially-planar main panel and a bore passing therethrough, and an axle disposed orthogonally to the substantially-planar main panel and passing through the bore. A spring is disposed around the axle. An outboard plate, disposed about the axle, is secured to the frame. The outboard plate incorporates a clocking feature. An inboard plate, having a clocking feature mated to the clocking feature of the outboard plate, is connected to the end of the spring.
Abstract:
An apparatus for winding a spring on a shaft, such as for counterbalancing a roll-up door, includes a housing that carries a transmission which is positionable over the shaft. The transmission is configured to be coupled via a connector to one end of the spring, while the other end of the spring is fixed to the shaft. Rotation of the transmission results in a turning of the connector and a winding and/or elongation of the spring.
Abstract:
The buffer device (10) has a body (11) which can be fitted in a rail (4), a damping element (12) for cushioning, and a retaining spring (13) for retaining a running mechanism (6) which is guided in the rail (4) and is provided for carrying and guiding slidable wing elements (2). The at least approximately U-profile-shaped body (11) of the buffer device (10), which body is punched and bent from a metal element, has a first and a second wing (14; 18), which wings are connected to each other by a central piece (20) whose tongue-shaped extension forms the retaining spring (13) serving to retain the running mechanism (6). The end pieces (17, 19, 26; 17*, 19*) of the wings (14; 18) are configured in such a manner that they are suitable for retaining the damping element (12). The buffer device (10) can be manufactured cost-effectively from a single metal plate and can be completed by a damping element (12). Since the retaining spring (13) is a component part of the body (11) of the buffer device (10), the device is highly stable.
Abstract:
Hardware designed to improve safety and minimize the risk involved in installing, maintaining, and operating sectional doors that use spring mechanisms to facilitate door movement. A lock-on side bearing bracket bears up a spring mechanism on a garage door. This side bearing bracket includes a hook and a perpendicular tab to prevent the spring mechanism from dangerously releasing its energy when parts supporting the spring mechanism are removed or fail. A lock-on bottom roller bracket having a bottom bearing plate and a safety hook similarly prevents a potential, dangerous release of energy when the garage door lift cable is in tension. A safety latch with a latch bar and a latch cover acts as a lock for the garage door. The use of multiple safety features makes the garage door systems of the present invention particularly safe to operate and maintain.