Abstract:
The present disclosure relates to a support assembly (10) for a self-containing cryogenic tank (12). The support assembly (10) comprises a first thermally insulating layer (14) and an impermeable layer (16) located at least partially above the first thermally insulating layer (14). The impermeable layer (16) is adapted to form a drip tray (18) for the cryogenic tank (12). According to the present disclosure, the support assembly further comprises a second thermally insulating layer (20) located at least partially above the impermeable layer (16), the second thermally insulating layer (20) is adapted to support the cryogenic tank (12).
Abstract:
A storage system for an absorbing gas including a plurality briquette units situated within the storage tank is disclosed. In some embodiments, each briquette unit includes a liner or open vessel, and compressed gas-absorbing particulate matter associated with the liner for external support. In some embodiments, the liner or vessel maintains the form of the briquette unit. The liner or vessel do not form a pressure tight vessel, and in some embodiments, the local pressure rating of the liner or vessel is less than the gas pressure within the storage tank. Exemplary gas-absorbing materials include but are not limited to methane and hydrogen adsorbing materials such as activated carbon, zeolite, and other appropriate hydrocarbon gas and/or hydrogen adsorbing materials. Optionally, each briquette unit includes a wrapper for preventing circulation of said particulate matter within the storage tank. Optionally, the storage system includes a mechanism for supplying or removing heat to at least one briquette unit. Furthermore, a method for manufacturing any of the aforementioned gas storage systems is disclosed. Some embodiments of the present invention provide methane-powered motor vehicles including but not limited to automobiles, buses, trucks and ships including a storage system with compressed methane-adsorbing particulate matter.
Abstract:
Provided a LNG ship that is manufactured in a short construction period by assembling a LNG tank on land and mounting the LNG tank in a hold of the ship.A cold insulator and a membrane are affixed on an inner side of a prismatic tank to fabricate a LNG tank, which is mounted in a hold having a double hull structure. In order to prevent the prismatic tank from deforming at the time of the mounting, strength members are welded to an outer surface of the prismatic tank before a thermal insulation work for the purpose of sufficient reinforcement. After the tank is mounted in the hold, the strength members of the prismatic tank are coupled to the inner hull of the ship to integrate the LNG tank and the hull, so that the weight of a liquid cargo is supported by the prismatic tank and the hull together.
Abstract:
Sealed and thermally insulated tank comprising a tank wall on a carrier structure, the tank wall comprising an insulating barrier, sealed barrier and an anchoring member, the sealed barrier comprising: a first undulating metal membrane which is arranged on a first portion of the insulating barrier, a second undulating metal membrane which is arranged on a second portion of the insulating barrier, which are located at one side and the other of the anchoring member, along an assembly edge which is orientated parallel with a longitudinal direction of the anchoring member, the first and the second membrane undulating with a first series of undulations which intersect with the assembly edge, terminal undulation portions which are associated with the first series of undulations of the first membrane extending in a direction transverse to the assembly edge in the direction of the second membrane, beyond the terminal undulation portions which are associated with the first series of undulations of the second membrane.
Abstract:
A suspension system (3) for an inner container (2) mounted for thermal insulation in an outer container (1) comprises a single fixed bearing (30, 31, 32, 33, 34, 35) comprising rod-shaped fixed bearing securing elements (5) which engage, on the one hand, the outer container and, on the other hand, the inner container and which can be stressed in tension and in compression, the fixed bearing securing elements (5) engaging the inner container (2) while being arranged so as to be distributed in an annular installation space (7) defined between the inner container (2) and the outer container (1) and the fixed bearing securing elements (5) engaging the outer container (1) while being distributed in the annular installation space (7). In addition, a floating bearing (41, 42, 43, 44, 45) arranged in the outer container (1) and supporting the inner container (2) and designed with a floating bearing ring (10, 10′) can be provided, with annularly distributed floating bearing securing elements, (11, 11′), which can be stressed in tension and in compression, engaging, on the one hand, the floating bearing ring (10, 10′) and, on the other hand, the inner container or the outer container. The floating bearing ring (10, 10′) can be prestressed by means of tension springs (12) or compression springs (13).
Abstract:
A fluid storage tank includes a plurality of tank sub-units disposed in an array. Each tank sub-unit of the plurality of tank sub-units has an aperture defined in at least one wall overlapping with another aperture defined in at least one adjacent tank sub-unit of the plurality of tank sub-units. Each tank sub-unit of the plurality of tank sub-units is in fluid communication with a single outlet port for selectively extracting a stored fluid from the tank. Each of the plurality of tank sub-units is in fluid communication with a single fluid fill port.
Abstract:
A sealed and thermally insulated tank arranged in a bearing structure (1) to contain a fluid, said tank comprising walls fixed to said bearing structure, a tank wall having a primary sealed barrier, a primary insulating barrier, a secondary sealed barrier and a secondary insulating barrier, the tank comprising a through-element arranged through the tank wall, in which tank the tank wall around the through-element comprises: secondary insulating blocks arranged on the wall of the bearing structure around the through-element and being covered by a first sealed layer forming the secondary sealed barrier, a circular plate arranged parallel to the tank wall at the same level as the first sealed layer forming the secondary sealed barrier, a second sealed layer (723a-d) fixed in a sealed manner straddling the first sealed layer and the circular plate all around the circular plate.
Abstract:
A fuel feeding system for storing liquefied gas and feeding gaseous fuel to be used in a piston engine, which fuel feeding system includes at least two cryogenic fuel tank arrangements having a first tank arrangement and a second tank arrangement in connection with each other. The fuel feeding system includes a gaseous fuel feed line connected at its first end to at least one piston engine, in which system the first tank arrangement is provided with a pressure build-up system having a first heat exchanger unit. The inlet of the heat exchanger unit is connected to a bottom section of the first tank arrangement the outlet of which is connectable to the top section of the first tank arrangement. The first tank arrangement and the second tank arrangement are both pressure vessels, and the first tank arrangement is selectively connectable to the fuel feed line by a gas line extending from an outlet in the top section of the first tank arrangement.
Abstract:
A large volume natural gas storage tank comprises a plurality of rigid tubular walls each having opposing ends and an intermediate segment with a closed tubular cross-section, the plurality of rigid tubular walls arranged in a closely spaced relationship and interconnected at their ends, with each end of a given of the plurality of rigid tubular walls connected with respective ends of two others of the plurality of rigid tubular walls to define a corner of the storage tank, such that the interiors of the plurality of rigid tubular walls define an interior fluid storage chamber.
Abstract:
Provided are a subsea storage tank for fluids and a method for building and installing the same. An exemplary embodiment of the present invention provides a subsea storage tank, including: a body having a storage space therein and formed of light weight concrete inner and outer sides of which are watertight coated or plated; a ballast placed on the body of the subsea tank; and a separation unit disposed inside the body and partitioning the storage space upper and lower, the separation unit being movable vertically in the storage space in accordance with the degree of storage fluid filling.