Abstract:
In a conventional moiré method, achieving both measurement accuracy and dynamic measurement and balancing field of view and measurement accuracy have been difficult. The present invention makes it possible to handle conventional moiré fringes as a grating for generating phase-shifted second-order moiré fringes, use a spatial phase shift method algorithm to accurately analyze the phases of the second-order moiré fringes before and after deformation, and determine shape from the phase differences between gratings projected onto the surface of an object of measurement and a reference surface and determine deformation and strain from the phase differences between the second-order moiré fringes, before and after deformation, of a repeating pattern on the object surface or a produced grating. As a result, it is possible to measure the three-dimensional shape and deformation distribution of an object accurately and with a wide field of view or dynamically and with a high degree of accuracy.
Abstract:
This disclosure provides an imprint apparatus configured to form a pattern with an imprint material by bringing the imprint material on a substrate and a pattern of the mold into contact with each other including a drive unit to bring part of the pattern of the mold into contact with the imprint material, and bring the pattern into contact with the imprint material so a contact surface area between the pattern of the mold and the imprint material increases, an interference fringe detecting unit to detect an interference fringe generated by reflected light from the pattern of the mold and reflected light from the substrate, and a state detecting unit to detect a contact state between the pattern of the mold and the imprint material on the basis of the interference fringe.
Abstract:
Various uses of visible light interference patterns are provided. Suitable interference patterns are those formed by diffraction from patterns of apertures. Typical uses disclosed herein relate to spatial metrology, such as a translational and/or angular position determination system. Further uses include the analysis of properties of the light itself (such as the determination of the wavelength of the electromagnetic radiation). Still further uses include the analysis of one or more properties (e.g. refractive index) of the matter through which the light passes. Part of the interference pattern is captured at a pixellated detector, such as a CCD chip, and the captured pattern compared with a calculated pattern. Very precise measurements of the spacing between maxima is possible, thus allowing very precise measurements of position of the detector in the interference pattern.
Abstract:
A phase shift amount measurement apparatus able to further correctly measure a phase shift amount of a phase shifter, wherein a laterally offset interference image of a phase shift mask is formed by a shearing interferometer, the interference image is captured by a two-dimensional imaging device, an output signal output from each light receiving element of the two-dimensional imaging device is supplied to a signal processing device, the phase shift amount is calculated for each light receiving element, the light receiving area of the light receiving element is very small, therefore the phase shift amount of any light receiving element outputting a peculiar phase amount due to incidence of diffraction light or multi-reflection light is excluded and the phase shift amount is determined based on the phase shift amount found from output signals of the remaining light receiving elements.
Abstract:
A method and apparatus for correcting an input beam (102) that uses an array of detectors (114) sensing a scanning fringe pattern to generate phase error information which can be corrected by a physically adjacent beam correction device such as an array of micro-electrical-mechanical-system (MEMS) mirrors (116).
Abstract:
An optical device is useful for analyzing an optical signal pulse to determine information related to the pulse, such as information related to its temporal coherence length. The optical device generally includes a plurality of interferometric devices to generate one or more respective interference patterns from the optical signal pulse, and a plurality of detectors associated with each respective interferometric device to receive the one or more respective interference patterns. At least one of the plurality of interferometric devices is disposed in a glass substrate. The optical device may be integrated in an optical correlation system having an analyzer coupled to the plurality of detectors to determine the temporal coherence length or other pulse-related information for the optical signal pulse based on the received interference patterns.
Abstract:
An optical image measuring apparatus capable of effectively obtaining a direct current component of a heterodyne signal which is composed of background light of interference light is provided. The optical image measuring apparatus includes: an optical interference system in which a light beam from a light source is divided into signal light and reference light by a beam splitter, a frequency of the reference light is shifted by a frequency shifter, and the signal light propagating through an object to be measured and the reference light reflected on a mirror are superimposed on each other by the beam splitter to produce interference light; beam splitters for dividing the interference light into interference light beams; shutters serving as an intensity modulating unit for modulating intensities of the respective interference light beams at predetermined intervals; CCDs for receiving the respective interference light beams whose intensities are modulated and outputting electrical signals; and a signal processing portion serving as a calculating unit for calculating an intensity of the direct current component corresponding to the background light of the interference light based on the outputted electrical signals.
Abstract:
According to the present disclosure, there is provided a device (2) and a method for measuring a wavelength for a laser device. The device (2) for measuring a wavelength for a laser device includes: a first optical path assembly and a second optical path assembly. The first optical path assembly and the second optical path assembly constitute a laser wavelength measurement optical path. The second optical path assembly includes: an FP etalon assembly (11) and an optical classifier (13). The homogenized laser beam passes through the FP etalon assembly (11) to generate an interference fringe. The optical classifier (13) is arranged after the FP etalon assembly (11) in the laser wavelength measurement optical path, and configured to deflect the laser beam passing through the FP etalon assembly (11). The FP etalon assembly (11) allows two FP etalons (FP1, FP2) to share the same optical path for an interference imaging, and therefore a compact structure having a small volume, a simple design, and a high stability are achieved. In cooperation with the optical classifier (13), a precise measurement for a laser wavelength may be achieved, and at the same time a wavelength measurement range is large. It is suitable for an online measurement for a laser wavelength and a corresponding closed-loop control feedback.
Abstract:
The measurement accuracy of an apparatus for measuring the surface shape of an object utilizing a two-wavelength phase-shift interferometry is improved. A low-coherence light source, a plurality of wavelength filters with different transmission wavelengths, an angle control unit and an analysis unit are provided. When performing a two-wavelength phase shift method, the analysis unit detects the wavelength difference between two wavelengths, and corrects a calculated wavelength value and a calculated phase value of one of the wavelengths for preventing a fringe-order calculation error. Next, the angle of the wavelength filters is controlled for making the actual wavelength difference coincident with a designed value. Thus, the wavelength difference between the two wavelengths is continuously controlled to be constant, which enables measurements of surface shapes with high accuracy, even when there are wavelength fluctuations due to the temperature change or the time elapse.
Abstract:
An evaluation method of evaluating an optical characteristic of an optical system to be evaluated using an interferometer, comprises a first acquisition step of acquiring a first interference fringe formed by the interferometer when a location of a movable element of the interferometer in an optical axis direction of the optical system is a first location, a second acquisition step of acquiring a second interference fringe formed by the interferometer when the location of the movable element in the optical axis direction is a second location different from the first location, a determination step of determining a pupil-center coordinate of the optical system based on the acquired first interference fringe and the acquired second interference fringe, and a computation step of computing the optical characteristic of the optical system using the pupil-center coordinate determined in the determination step.