Abstract:
A reflection property measuring device comprising illumination light and reflected light polarizing plates held by a holder in a mutually superposed state in a thickness direction thereof, wherein the holder has a fittingly-holding portion for setting a held posture, and each of the polarizing plates has a fitting portion fittable to the fittingly-holding portion. The fitting portions of the polarizing plates are provided at positions allowing the polarizing plates to be held by the holder in respective postures where polarizing directions thereof intersect orthogonally. A manufacturing method is disclosed for polarizing plates used in the device, wherein the illumination light and reflected light polarizing plates are manufactured in such a manner as to be punched out from the same polarizing plate material.
Abstract:
A system and a method for optimizing an iris setting, used in combination with a lamp, for each excitation wavelength for each carousel run in an apparatus for identifying and measuring bacteria in biological samples. The system includes a feedback control loop positioned between a filter wheel and an optical cup for measuring the intensity level of the excitation wavelength, and feeding this information to an iris having an iris setting control device such that the iris setting may be adjusted based upon the measured intensity level to control and optimize the level of light fed to the filter wheel from the lamp. The iris setting can be adjusted so that the level of light fed to the filter wheel remains constant during the lifetime of the lamp and to ensure that the level of light fed to the sample remains below the level at which photo-bleaching occurs.
Abstract:
Disclosed herein is an apparatus for and method of measuring bio-chips, which can implement an illumination method of a novel type that illuminates a bio sample (which may be also referred to as a “bio specimen”) through a side face of a substrate using a diffusion plate to form an evanescent field by the illumination light over the entire surface of a substrate so as to uniformly secure brightness of the illuminated light over a wide area of a substrate, thereby more efficiently measuring fluorescence information of a bio-chip over a wide field of view.
Abstract:
The invention relates to a sample analysis apparatus. The apparatus comprises: a radiation system to irradiate the sample in a vial and an analyser with a camera to analyse the radiation received from the sample in the vial. The apparatus is provided with a holder to releasable hold the vial and with an optical path for the radiation system to irradiate the sample and for the camera to make images of the sample. The radiation system can be used for front lighting of the sample in the vial or for back lighting of the sample in the vial. The camera may be provided with a telecentric lens.
Abstract:
A method comprising at least one light source configured to generate a light of at least one wavelength and project the light over an optical path, a sample device, the device containing a sample obtained from exhalation of a person, a vortex mask configured to receive the light after the light passes through at least a portion of the sample device, the vortex mask including a series of concentric circles etched in a substrate, the vortex mask configured to provide destructive interference of coherent light received from the at least one light source, a detector configured to detect and measure wavelength intensities from the light in the optical path, the wavelength intensities being impacted by the light passing through the sample, the detector receiving the light that remained after passing through the vortex mask, and a processor configured to provide measurement results based on the wavelength intensities.
Abstract:
A dark-field optical system may include a rotational objective lens assembly with a dark-field objective lens to collect light from a sample within a collection numerical aperture, where the dark-field objective lens includes an entrance aperture and an exit aperture at symmetrically-opposed azimuth angles with respect to an optical axis, a rotational bearing to allow rotation of at least a part of the dark-field objective lens including the entrance aperture and the exit aperture around the optical axis, and a rotational driver to control a rotational angle of the entrance aperture. The system may also include a multi-angle illumination sub-system to illuminate the sample with an illumination beam through the entrance aperture at two or more illumination azimuth angles, where an azimuth angle of the illumination beam on the sample is selectable by rotating the objective lens to any of the two or more illumination azimuth angles.
Abstract:
A device for chemiluminescence analysis includes: a reaction chamber; a first inlet opening for introducing a sample gas into the reaction chamber via a first supply line; a second inlet opening for introducing a reaction gas into the reaction chamber via a second supply line; an outlet opening for discharging a mixture of the sample gas and the reaction gas out of the reaction chamber via an outlet line; a mixer unit in which the sample gas and the reaction gas are mixed; and a sensor unit for detecting chemiluminescent radiation in the reaction chamber, wherein the mixer unit is arranged in a first end region of the reaction chamber, and the sensor unit is arranged in a second end region of the reaction chamber opposite the first end region. An elemental analyzer including the device is also disclosed.
Abstract:
In order to perform gas detection at multiple locations with a simple configuration and at a low cost, the gas detection device is provided with: a transmission unit for outputting to a transmission path, as a first optical signal, pulse light that has a temporally changing wavelength and that is generated by pulse light modulated by an optical wavelength modulator; and a reception unit for receiving a second optical signal output from a sensor head outputting the first optical signal propagated through the atmosphere as the second optical signal, converting the second optical signal received into an electric the signal detecting, by each sensor head, a predetermined type of gas contained in the atmosphere based on a temporal change in amplitude of the electric signal, and outputting a result of detection of the gas.
Abstract:
In an optical-based sample analysis, for example fluorescence-based or absorbance-based measurement, a selection is made between a first excitation light path and a second excitation light path. The first excitation light path directs excitation light from a light source, through an excitation monochromator, through an excitation filter, and to a sample. The second excitation light path directs excitation light from the light source, through the excitation filter, and to the sample while bypassing the excitation monochromator. Excitation light generated by the light source is transmitted along either the first excitation light path or the second excitation light path in accordance with the selection made, thereby irradiating the sample. In response the sample produces emission light (transmitted light in the case of absorbance measurements), which is transmitted to and measured by a light detector.
Abstract:
A compact optical imaging system including a single filter and a light source that provides lateral illumination for bead detection in digital assays. The light source is configured to emit light toward the detection vessel. The single filter is positioned to receive light reflected from a sample in the detection vessel, that originated from the light source, and receive an output from a sample in the detection vessel. A detector is configured to receive a portion of the reflected light and a portion of the output that passes through the single filter.