Waveguide type optical element
    11.
    发明授权

    公开(公告)号:US09946100B2

    公开(公告)日:2018-04-17

    申请号:US15516196

    申请日:2016-03-24

    Abstract: To effectively prevent the acceleration of the drift phenomenon generated by the application of a high electric field to a substrate through a bias electrode in a waveguide type optical element. A waveguide type optical element includes a substrate (100) having an electro-optic effect, two optical waveguides (104 and 106) disposed on a surface of the substrate, a non-conductive layer (120) which is disposed on the substrate and is made of a material having a lower dielectric constant than the substrate, and a control electrode (150) which is disposed on the non-conductive layer and is intended to generate a refractive index difference between the two optical waveguides by respectively applying electric fields to the two optical waveguides, and the non-conductive layer is constituted of a material which includes silicon oxide, an oxide of indium, and an oxide of titanium and has a ratio between a molar concentration of the titanium oxide and a molar concentration of indium oxide of 1.2 or more, and a voltage generating an electric field of 1 V/μm or more in the substrate is applied to the control electrode.

    OPTICAL RING RESONATOR STRUCTURE WITH A BACKSIDE RECESS

    公开(公告)号:US20180074263A1

    公开(公告)日:2018-03-15

    申请号:US15699142

    申请日:2017-09-08

    Applicant: RANOVUS INC.

    Abstract: An optical ring resonator structure with a backside recess is provided at a device. The device includes: a substrate having a device-side and a backside opposite the device-side; an optical ring resonator located on the device-side of the substrate; a heater having a shape complementary to the optical ring resonator, the heater positioned to heat the optical ring resonator; and one or more metal traces that connect at least to the heater, the metal traces configured to provide power to the heater and extending outward from the heater. The device further includes a recess on the backside of the substrate, the recess centered on the optical ring resonator, and having a diameter larger than both respective outer diameters of the optical ring resonator and the heater, the recess further extending laterally into a region of the one or more metal traces.

    WAVEGUIDE TYPE OPTICAL ELEMENT
    13.
    发明申请

    公开(公告)号:US20180011348A1

    公开(公告)日:2018-01-11

    申请号:US15516196

    申请日:2016-03-24

    Abstract: To effectively prevent the acceleration of the drift phenomenon generated by the application of a high electric field to a substrate through a bias electrode in a waveguide type optical element. A waveguide type optical element includes a substrate (100) having an electro-optic effect, two optical waveguides (104 and 106) disposed on a surface of the substrate, a non-conductive layer (120) which is disposed on the substrate and is made of a material having a lower dielectric constant than the substrate, and a control electrode (150) which is disposed on the non-conductive layer and is intended to generate a refractive index difference between the two optical waveguides by respectively applying electric fields to the two optical waveguides, and the non-conductive layer is constituted of a material which includes silicon oxide, an oxide of indium, and an oxide of titanium and has a ratio between a molar concentration of the titanium oxide and a molar concentration of indium oxide of 1.2 or more, and a voltage generating an electric field of 1 V/μm or more in the substrate is applied to the control electrode.

    Electro-optic beam deflector device

    公开(公告)号:US09829766B2

    公开(公告)日:2017-11-28

    申请号:US15428432

    申请日:2017-02-09

    Abstract: A substantially planar waveguide for dynamically controlling the out-of-plane angle at which a light beam exits the waveguide. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, the waveguide may contain one or more taper regions such that the light beam exits the waveguide and propagates out-of-the-plane of the waveguide into an out-coupling medium at a propagation angle. In one example, the waveguide may contain one or more electrodes onto which one or more voltages may be applied. The magnitude of the propagation angle may be electronically controlled by stored by controlling or altering the magnitude of the one or more applied voltages.

Patent Agency Ranking