Abstract:
An optical buffer device includes plural optical memory elements that are capable of holding light and an optical delay element. The plural optical memory elements are arranged on an optical path through which signal light and control light propagate in mutually opposite directions. Further, the optical delay element is disposed between the optical memory elements that are adjacent to each other. The optical delay element imparts different delays to the signal light and the control light. According to a preferred exemplary embodiment of this optical buffer device, each of the optical memory elements includes an optical waveguide through which the signal light and the control light propagate and an optical resonator that is disposed in proximity to this optical waveguide, and a coupling between the optical waveguide and the optical resonator is generated or cancelled depending on whether or not the control light is inputted.
Abstract:
A light source, including: a pulse generator for providing an initial sequence of light pulses, the pulse generator including an optical source for producing optical pulses; and a modulator in communication with the optical source for increasing or decreasing the selected number of pulses provided by the pulse generator in the selected time period; first and second optical arms, for propagating, respectively, first and second sequences of light pulses, wherein the first optical arm includes a first manipulator configured to generate the first sequence of light pulses from the initial sequence of light pulses, wherein the light source includes a nonlinear optical element arranged to receive the first sequence of light pulses or the second sequence of light pulses, and an optical switch arranged to switch either the first sequence of light pulses or the second sequence of light pulses for reception by the nonlinear optical element.
Abstract:
A programmable two-dimensional simultaneous multi-beam optically operated phased array receiver chip is manufactured based on silicon-on-insulator (SOI) and indium phosphide (InP) semiconductor manufacturing processes, including the SiN process. The InP-based semiconductor is used for preparing a laser array chip and a semiconductor optical amplifier array chip, the SiN is used for preparing an optical power divider, and the SOI semiconductor is used for preparing a silicon optical modulator, a germanium-silicon detector, an optical wavelength multiplexer, a true delay line, and other passive optical devices. The whole integration of the receiver chip is realized through heterogeneous integration of the InP-based chip and the SOI-based chip. Simultaneous multi-beam scanning can be realized through peripheral circuit programming control. The chip not only can realize two-dimensional multi-beam scanning, but also has strong expansibility, such that the chip can be used for ultra-wideband high-capacity wireless communication and simultaneous multi-target radar recognition systems.
Abstract:
Described are systems and methods that provide tunable true time delay of a signal using a compact photonic circuit. The photonic circuit comprises a plurality of waveguides, in which each waveguide corresponds to a different time delay. A particular one of the waveguides corresponding to a desired time delay is selected by tuning the wavelength of a tunable laser. Additional photonic circuits can be used to provide additional selectable time delays.
Abstract:
This invention relates to optical delay lines, particularly to modifying an optical signal passing through an optical delay line. A method of applying a Doppler shift to an optical signal as it passes through an optical delay line is provided, the method comprising the step of progressively altering a property of the optical delay line during passage of the optical signal therethrough such that the time taken for the optical signal to pass therethrough is progressively lengthened or progressively shortened for successive portions of the optical signal. In addition, an optical delay line is provided that may be used in accordance with the above method.
Abstract:
This invention relates to optical delay lines, particularly to modifying an optical signal passing through an optical delay line. A method of applying a Doppler shift to an optical signal as it passes through an optical delay line is provided, the method comprising the step of progressively altering a property of the optical delay line during passage of the optical signal therethrough such that the time taken for the optical signal to pass therethrough is progressively lengthened or progressively shortened for successive portions of the optical signal. In addition, an optical delay line is provided that may be used in accordance with the above method.
Abstract:
A time compensation architecture for use with a plurality of optical signals is disclosed. It comprises means for receiving the plurality of optical signals, optical means for selectively delaying the propagation of each of the plurality of optical signals, and means for outputting the time delayed optical signals. The delay may be achieved by changing the indices of refraction or the material lengths of the elements and can either be an active or a passive compensation technique.
Abstract:
A programmable two-dimensional simultaneous multi-beam optically operated phased array receiver chip is manufactured based on silicon-on-insulator (SOI) and indium phosphide (InP) semiconductor manufacturing processes, including the SiN process. The InP-based semiconductor is used for preparing a laser array chip and a semiconductor optical amplifier array chip, the SiN is used for preparing an optical power divider, and the SOI semiconductor is used for preparing a silicon optical modulator, a germanium-silicon detector, an optical wavelength multiplexer, a true delay line, and other passive optical devices. The whole integration of the receiver chip is realized through heterogeneous integration of the InP-based chip and the SOI-based chip. Simultaneous multi-beam scanning can be realized through peripheral circuit programming control. The chip not only can realize two-dimensional multi-beam scanning, but also has strong expansibility, such that the chip can be used for ultra-wideband high-capacity wireless communication and simultaneous multi-target radar recognition systems.
Abstract:
A broadband light source that outputs broadband light with reduced peak power includes a pulsed light source, an optical fiber, a band-elimination filter, and a light echo unit. The optical fiber receives pulsed light output from the pulsed light source, expands the spectrum of the pulsed light by a nonlinear optical effect within the fiber to generate supercontinuum light, and outputs the supercontinuum light. The light echo unit has a plurality of optical paths between an input terminal and an output terminal thereof. At least one optical path in the plurality of optical paths serves as a loop optical path. The light echo unit receives, via the input terminal, the supercontinuum light output from the optical fiber and having traveled through the band-elimination filter, guides the supercontinuum light through the plurality of optical paths, and outputs the supercontinuum light guided by the plurality of optical paths from the output terminal.
Abstract:
A broadband light source unit that produces a supercontinuum lightwave having a flat spectral form and has a light source that outputs a first source lightwave, which is a pulse lightwave having periodic pulses with a constant intensity, an intensity modulator that receives the first source lightwave, produces a second source lightwave having pulses whose intensities are different from one another, and outputs it, and a nonlinear optical medium section that receives the second source lightwave, produces a supercontinuum lightwave having a wavelength band broadened through a nonlinear optical phenomenon, and outputs it. An optical analyzer includes a light-applying section that applies a supercontinuum lightwave outputted from the broadband light source unit to a light-receiving region of a measurement-undergoing object, and an image pickup section that receives a lightwave generated at the light-receiving region by the application of the supercontinuum lightwave and picks up an image of the measurement-undergoing object.