Abstract:
The invention taught herein provides a method, device and system for modulating or switching electromagnetic radiation by controlling a state of the radiation, such as a polarization state. Radiation is directed at a reflective or transmissive structure, such that the radiation is incident on the structure. The structure includes a property that can be dynamically switched between two configurations, one of which is asymmetric and is configured to modify the polarization characteristic of the radiation. The dynamically configurable structure can be combined with polarization components to achieve modulation. Embodiments suitable for mode-locking a laser and for cavity dumping a mode-locked laser are also disclosed.
Abstract:
A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
Abstract:
The multi wavelength laser device includes a laser light source 10 that emits a plurality of laser lights 20 whose fundamental wavelengths differ from one another, a dispersing element 30 that changes the traveling direction of each of the plurality of laser lights according to the wavelength and the incidence direction, and that emits the laser lights in a state in which the laser lights are superposed on the same axis, and a wavelength conversion element 40 that has a plurality of polarization layers disposed therein and having different periods, and that performs wavelength conversion on the fundamental wave laser lights emitted from the dispersing element 30 and placed in the state in which the laser lights are superposed on the same axis, and emits a plurality of laser lights 50 acquired through the wavelength conversion in a state in which the laser lights are superposed on the same axis.
Abstract:
An optical-waveguide grating modulator is compatible with high-frequency electrical modulation signals of limited bandwidth. The modulator comprises an optical grating formed in an optical waveguide constructed from electro-optic (EO) material and an electrode that is an RF waveguide or RF transmission line that conducts a traveling-wave electromagnetic (EM) field and that contains a portion of the optical-grating waveguide with a continuous grating. The RF input modulation signal is coupled into an RF EM field that propagates through the RF waveguide or transmission line in a direction that is parallel to the direction the light propagates in the optical-grating waveguide and that EM field overlaps the optical-grating waveguide. The light travels along the optical-grating waveguide preferably at the same velocity as the RF EM field travels along the RF waveguide or transmission line.
Abstract:
The invention taught herein provides a method, device and system for modulating or switching electromagnetic radiation by controlling a state of the radiation, such as a polarization state. Radiation is directed at a reflective or transmissive structure, such that the radiation is incident on the structure. The structure includes a property that can be dynamically switched between two configurations, one of which is asymmetric and is configured to modify the polarization characteristic of the radiation. The dynamically configurable structure can be combined with polarization components to achieve modulation. Embodiments suitable for mode-locking a laser and for cavity dumping a mode-locked laser are also disclosed.
Abstract:
An electro-optic modulator device includes a modulation region, a reflecting region, a conductive line and an anti-reflecting region. The modulation region includes a doped region. The reflecting region is over the modulation region. The conductive line is connected to the doped region. The conductive line extends through the reflecting region. The anti-reflecting region is on an opposite surface of the modulation region from the reflecting region.
Abstract:
Provided are a transmission type high-absorption optical modulator and a method of manufacturing the transmission type high-absorption optical modulator. The optical modulator includes: a substrate; a lower distributed Bragg reflector (DBR) layer on the substrate; a lower clad layer on the lower DBR layer; an active layer that is formed on the lower clad layer and includes a quantum well layer and a quantum barrier layer; an upper clad layer on the active layer; an upper DBR layer on the upper clad layer; and a doping layer that supplies carriers to the quantum well layer. In the optical modulator, the doping layer may be included in the quantum barrier layer or in at least one of the upper and lower clad layers.
Abstract:
An electro-optic modulator including a semiconductor region, a first reflecting region over the semiconductor region and an anti-reflecting region on an opposite surface of the semiconductor region from the first reflecting layer. The semiconductor region includes a first doped region and a second doped region.
Abstract:
A sub-pixel unit for a reflective display includes a color filter including a tunable high contrast grating. The tunable high contrast grating reflects light within a first range of wavelengths, and the sub-pixel unit can exist in a first state and a second state, the first state reflecting at least one of (i) light within a different range of wavelengths, and (ii) light of a different intensity level, than the second state.
Abstract:
A first electro-optic crystal substrate and a second electro-optic crystal substrate are provided as an electro-optic crystal substrate. The first electro-optic crystal substrate comprises a first periodic polarization reversal structure in which first polarization pairs, in each of which the directions of polarization in response to electric fields are opposite to each other, are arranged in a first period along a first arrangement direction which is orthogonal or inclined with respect to the direction of propagation, and light passes through the first periodic polarization reversal structure. The second electro-optic crystal substrate comprises a second periodic polarization reversal structure in which second polarization pairs, in each of which the directions of polarization in response to electric fields are opposite to each other, are arranged in a second period along a second arrangement direction which is orthogonal or inclined with respect to the direction of propagation, and light outstanding from the first electro-optic crystal substrate passes through the second periodic polarization reversal structure. At least one of a first condition and a second condition is satisfied. The first condition is that the first and the second periods are different from each other and a second condition is that the first arrangement direction and the second arrangement direction are different from each other.