Abstract:
A high-luminance plasma display panel has a plurality of discharge cells including a phosphor film emitting visible rays by excitation caused by ultraviolet light generated by the discharge of a discharge gas. The phosphor film has at least two layers of a phosphor layer and a reflecting layer, and the phosphor layer is arranged closer to the discharge space side than the reflecting layer. A film thickness Wt of the phosphor film is 40 μm or less, and a film thickness Wp of the phosphor layer, a particle diameter dp of a phosphor that is at least a part of components of the phosphor layer, a film thickness Wr of the reflecting layer, and a particle diameter dr of a reflecting material that is at least a part of components of the reflecting layer satisfy 2dp≦Wp≦5dp and 2dr≦Wr≦Wt−Wp.
Abstract:
A plasma display panel and a plasma display apparatus are disclosed. The plasma display panel includes a front substrate, a rear substrate positioned to be opposite to the front substrate, a barrier rib positioned between the front substrate and the rear substrate to partition a discharge cell, and a phosphor layer positioned inside the discharge cell. The phosphor layer includes a first phosphor layer emitting red light, a second phosphor layer emitting blue light, and a third phosphor layer emitting green light. The first phosphor layer includes a red pigment. At least one of the first phosphor layer, the second phosphor layer or the third phosphor layer includes magnesium oxide (MgO) material.
Abstract:
A plasma display panel and a drive method therefor, which can enhance a representation capability when displaying a dark image. The plasma display panel includes fluorophor layers containing magnesium oxide. The drive method includes a reset step to initialize all the pixel cells into states of one of a light-up mode and a light-off mode, and an address step in which the pixel cells are caused to perform address discharges selectively in accordance with pixel data, which are successively executed in each of a head subfield and a second subfield within a one-field display period. In reset step, a voltage that sets row electrodes on one side, in the row electrode pairs as an anode and sets the column electrodes set as a cathode is applied between the row electrodes on the one side and the column electrodes.
Abstract:
A plasma display panel including: a front substrate an opposing rear substrate; barrier ribs to form discharge cells between the front rear substrates; discharge electrodes disposed on the front substrate; address electrodes disposed on the rear substrate; and a phosphor layer disposed inside the discharge cells, covering the address electrodes. The phosphor layer includes a phosphor mixed with an intercalation agent having a smaller particle size than the phosphor.
Abstract:
Provided are a green phosphor for a plasma display panel (PDP) represented by Formula 1 and a PDP including a phosphor layer formed of the same: (Y1-x-yGdx)Al3(BO3)4:Tby Formula 1 where 0≦x
Abstract translation:提供一种用于由式1表示的等离子体显示面板(PDP)的绿色荧光体和包括由其形成的荧光体层的PDP:(Y1-x-yGdx)Al3(BO3)4:T式1其中0&nlE; x < 1,0
Abstract:
In a PDP, an end of a first partition (124) is provided with a partition end 126 whose height dimension and width dimension are smaller than those of the first partition (124). With this arrangement, when a nozzle is moved from a portion between the partition ends (126) on a first side to a portion between the partition ends (126) on a second side in a phosphor layer forming step for forming a phosphor layer, a phosphor paste can be uniformly applied to recessed portions (123A), thereby easily providing the PDP that includes the phosphor layer with which good images can be realized.
Abstract:
A plasma display panel has a front substrate, a rear substrate, and a phosphor layer. The front substrate has a dielectric layer formed so as to cover a plurality of display electrodes disposed on a substrate, and a protective layer formed on the dielectric layer. The rear substrate is faced to the front substrate so as to form discharge space, has data electrodes in the direction intersecting with the display electrodes, and has barrier ribs for partitioning the discharge space. The phosphor layer is formed by applying phosphor ink that is made of a phosphor material and dispersant between the barrier ribs of the rear substrate. Nano-particles with a diameter of a range of 1 nm to 100 nm inclusive, or a solvent having an affinity for the dispersant of the phosphor ink is applied to the surfaces of the barrier ribs, and then the phosphor ink is applied to them, thereby forming the phosphor layer.
Abstract:
The present invention provides a method for producing a plasma display panel, including a step of providing a back substrate with a barrier rib to form a plurality of recesses separated each other by the barrier rib, and a step of applying a phosphor ink to the recesses using an inkjet device,wherein the phosphor ink contains a phosphor and a dispersant, and any one of (a) to (c) is satisfied: (a) the phosphor is a red phosphor, and the amount of the dispersant added is not less than 0.0001 g and not more than 0.02 g per 1 m2 of the surface area of the red phosphor; (b) the phosphor is a blue phosphor, and the amount of the dispersant added is not less than 0.0007 g and not more than 0.04 g per 1 m2 of the surface area of the blue phosphor; and (c) the phosphor is a green phosphor, and the amount of the dispersant added is not less than 0.0001 g and not more than 0.02 g per 1 m2 of the surface area of the green phosphor.
Abstract:
Provided are a phosphor composition formed in a white discharge cell of a plasma display panel (PDP) and a PDP using the same. The PDP includes a first substrate and a second substrate facing the first substrate, a barrier rib disposed between the first substrate and second substrate to define a plurality of discharge cells, first discharge electrodes and second discharge electrodes disposed between the first substrate and the second substrate, and a phosphor composition. The discharge cells includes red discharge cells, green discharge cells, blue discharge cells, and white discharge cells, and the phosphor composition is formed in the white discharge cells. One of the red discharge cells, one of the green discharge cells, one of the blue discharge cells, and one of the white discharge cells form a pixel. The composition ratio of each of the phosphors to another is different from each other. Since the white phosphor layer includes red, green, and blue phosphors each of which having a different composition ratio within a predetermined range, light room contrast may be improved by controlling brightness in the white discharge cell, and difference of efficiencies in red, green, and blue discharge cells may be compensated.
Abstract:
A PDP includes a guide partition (127) that extends substantially along a center line F between a pair of first partitions (125) at a position spaced apart from an end of the nearest first partition (125) by a distance H. In a phosphor forming step, a phosphor paste is initially applied on the guide partition (127) by a nozzle (200), which has been located above the guide partition (127). Then, the nozzle (200) is moved to provide a phosphor layer whose end is formed on the guide partition (127).