Abstract:
One or more components of an x-ray target assembly are manufactured using an electroforming process. The electroforming is carried out by providing an electroforming apparatus that includes an electrolyte, a metal anode, and an electrically conductive cathode. The cathode includes an intermediate x-ray target assembly upon which the metal is to be deposited and/or an electrically conductive mold for forming a component of an x-ray target assembly. The x-ray target component (e.g., a substrate or focal track) is formed by submersing the cathode in the electrolyte and applying a voltage across the anode and the cathode to cause the metal from the anode to be electroformed on the intermediate target and/or the mold. The electroforming is continued until a desired thickness of metal is achieved. The electroforming process can be used to manufacture an x-ray target substrate, focal track, stem, barrier, or other metal layer of the target assembly.
Abstract:
An anode for an X-ray source is formed in two parts, a main part (18) and a collimating part (22). The main part (18) has the target region (20) formed on it. The two parts between them define an electron aperture (36) through which electrons pass reach the target region (20), and an X-ray aperture through which the X-rays produced at the target leave the anode. The anode produces at least the first stage of collimation of the X-ray beam produced.
Abstract:
A system for converting an electron beam into a photon beam includes an electron accelerator configured for generating an electron beam of accelerated electrons along an irradiation axis (Z); a scanning unit; a focusing unit for forming a focused beam converging towards a first focusing point (Fx) located on the irradiation axis (Z); a converting unit located between the focusing unit and the first focusing point (Fx), and comprising one or more bremsstrahlung converters, configured for converting the focused beam into a photon beam, wherein the one or more bremsstrahlung converters are curved such that the focused beam intersects each of the one or more bremsstrahlung converters with an intersecting angle comprised between 65° and 115° at all points, preferably between 75° and 105° at all points; and a target holder configured for holding a target.
Abstract:
In examples, it is disclosed an inspection system comprising: a secondary source of radiation configured to generate secondary electromagnetic radiation for inspection of a load in response to being irradiated by primary electromagnetic radiation from a primary generator of electromagnetic radiation; and one or more detectors configured to detect radiation from the load after interaction with the secondary inspection beam.
Abstract:
An optical filtering method that utilizes a Microchannel Plate (MCP) and an optical system that utilizes the optical filtering method. As an example, a XUV/SXR generation system that includes a MCP as a dispersionless, broadband IR pump filter.
Abstract:
The present invention relates to X-ray generating technology in general. Providing an electron collecting element of an X-ray generating device statically may allow for the manufacture of X-ray systems with reduced moving parts and actuating parts, possibly reducing manufacturing costs and sources for failure. Consequently, an electron collecting element with increased thermal loadability is presented. According to the present invention, an electron collecting element (28) is provided, comprising a surface element (22) and a heat conducting element (26). The heat conducting element (26) comprises a first thermal conductivity in a first direction and at least a second thermal conductivity in at least a second direction. The first thermal conductivity is greater than the second thermal conductivity. The first direction is substantially perpendicular to the surface element (22).
Abstract:
Systems and methods for detecting an image of an object by use of X-ray beams generated by multiple small area sources are disclosed. A plurality of monochromator crystals may be positioned to intercept the plurality of first X-ray beams such that a plurality of second X-ray beams each having predetermined energy levels is produced. Further, an object to be imaged may be positioned in paths of the second x-ray beams for transmission of the second X-ray beams through the object and emitting from the object a plurality of transmission X-ray beams. The X-ray beams may be directed at angles of incidence upon a plurality of analyzer crystals for detecting an image of the object.
Abstract:
X-ray apparatus comprises a linear accelerator adapted to produce a beam of electrons at one of at least two selectable energies and being controlled to change the selected energy on a periodic basis, and a target to which the beam is directed thereby to produce a beam of x-radiation, the target being non-homogenous and being driven to move periodically in synchrony with the change of the selected energy. In this way, the target can move so that a different part is exposed to the electron beam when different pulses arrive. This enables the appropriate target material to be employed depending on the selected energy. The easiest form of periodic movement for the target is likely to be a rotational movement. The target can be immersed in a coolant fluid such as water. The linear accelerator can be of the type disclosed in WO2006/097697A1. The target preferably contains at least one exposed area of tungsten and/or at least one exposed area of carbon. These can be present as inhomogeneities in the material of which the target is composed, such as Carbon inserts in a Tungsten substrate (or vice versa), alternating segments of Carbon and Tungsten, Carbon and Tungsten inserts in a substrate of a third material, or arrangements involving other materials in addition to or instead of Carbon and/or Tungsten. Alternatively, the target can be of a homogenous material but have inhomogeneities in its thickness to cater for the different electron energies. The same concept can be applied to the filter. A detector can be provided, operating in synchrony with the energy variation. Such an x-ray apparatus can form a part of a radiotherapy apparatus, in which case the first selected energy can be a diagnostic energy and a second selected energy a therapeutic energy.
Abstract:
A multi-color X-ray generator includes an electron beam generator 10 which accelerates an electron beam to generate a pulse electron beam 1 and which transmits the beam along a predetermined rectilinear orbit 2, a composite laser generator 20 which successively generates a plurality of pulse laser lights 3a, 3b having different wavelengths, and a laser light introduction device 30 which introduces the pulse laser lights along the rectilinear orbit 2 to be opposed to the pulse electron beam 1, so that the plurality of pulse laser lights 3a, 3b successively head-on collide with the pulse electron beam 1 along the rectilinear orbit 2 so as to generate two or more types of monochromatic hard X-rays 4 (4a, 4b).
Abstract:
A method and apparatus, such as a spectrometer, are provided for facilitating the detection of an x-ray signal in a manner that effectively discriminates the x-ray signal from noise. A spectrometer may be provided which includes an x-ray converter for converting x-ray signals which impinge thereupon into corresponding pairs of electrons and positrons. The spectrometer also includes a deflector for separately deflecting the electrons and the positrons as well as electron and positron detectors for separately detecting the deflected electrons and positrons, respectively. As such, an x-ray signal can be identified in instances in which the deflected electrons and positrons are detected in coincidence.