Abstract:
An x-ray apparatus includes a vacuum chamber that includes a window for exit of x-rays. Electrons are generated at a cathode within the vacuum chamber and accelerated toward a target anode associated with the window. An x-ray generating layer is included as a surface of the target anode to receive the electrons emitted by the cathode and to create x-rays. A blocking path blocks over 70% of the free electrons reaching said target anode from continuing on to exit through the window, while allowing x-rays leaving the x-ray generating layer to continue along the selectively blocking path to exit through the window. The x-ray apparatus is capable of operating at low voltage and relatively high power to reduce the necessary shielding and the corresponding weight of the apparatus yet allow more ready absorption of x-rays by items being irradiated.
Abstract:
Some example embodiments provide an x-ray tube for a stereoscopic imaging having an evacuated x-ray tube housing; an electron emitter apparatus in the x-ray tube housing, the electron emitter apparatus including a first field effect emitter with a first emitter surface and a second field effect emitter with a second emitter surface, at least one of the first emitter surface or the second emitter surface being segmented such that a portion of the at least one of the first emitter surface or the second emitter surface can be set relative to the respective overall emitter surface by selectively switching emitter segments of the at least one of the first emitter surface or the second emitter surface; an anode unit in the x-ray tube housing, the anode unit configured to generate x-ray radiation for the stereoscopic imaging as a function of electrons striking two focal points; and a control unit.
Abstract:
Provided are an on-chip miniature X-ray source and a method for manufacturing the same. The on-chip miniature X-ray source includes: an on-chip miniature electron source; a first insulating spacer provided on an electron-emitting side of the on-chip miniature electron source, where the first insulating spacer has a cavity structure; and an anode provided on the first insulating spacer, where a closed vacuum cavity is formed between the on-chip miniature electron source and the anode. The on-chip miniature X-ray source has the advantages of stable X-ray dose, low working requirements for vacuum, fast switch response, capability of integration and batch fabrication, and can be used in various types of small and portable X-ray detection, analysis and treatment devices.
Abstract:
Various methods and systems are provided for a cathode of an X-ray imaging system. A method for fabricating the cathode comprises machining a plurality of focusing features on a focusing element and welding the focusing element to a base assembly.
Abstract:
An electron gun, an X-ray source and a CT device are provided. The electron gun includes a body having a first end portion and a second end portion opposite to each other, wherein the first end portion is a connecting end portion; an internal cavity is formed in the body and has an opening positioned on the second end portion,d a cathode, a grid, a compensation electrode and a focus electrode, orderly arranged in the internal cavity in a direction from the first end portion to the second end portion.
Abstract:
The present disclosure is directed to an electron source and an X-ray source using the same. The electron source of the present invention comprises: at least two electron emission zones, each of which comprises a plurality of micro electron emission units, wherein the micro electron emission unit comprises: a base layer, an insulating layer on the base layer, a grid layer on the insulating layer, an opening in the grid layer, and an electron emitter that is fixed at the base layer and corresponds to a position of the opening, wherein the micro electron emission units in the same electron emission zone are electrically connected and simultaneously emit electrons or do not emit electrons at the same time, and wherein different electron emission zones are electrically partitioned.
Abstract:
The present disclosure is directed to an electron source and an X-ray source using the same. The electron source of the present invention comprises: at least two electron emission zones, each of which comprises a plurality of micro electron emission units, wherein the micro electron emission unit comprises: a base layer, an insulating layer on the base layer, a grid layer on the insulating layer, an opening in the grid layer, and an electron emitter that is fixed at the base layer and corresponds to a position of the opening, wherein the micro electron emission units in the same electron emission zone are electrically connected and simultaneously emit electrons or do not emit electrons at the same time, and wherein different electron emission zones are electrically partitioned.
Abstract:
An arrangement for inverse x-ray phase contrast imaging includes a photon-counting x-ray detector and a multibeam x-ray tube. Focal points of the x-ray tube are collimated such that a narrow x-ray beam that is directed toward an optical axis of the arrangement and toward the x-ray detector may be generated. An active surface of the x-ray detector is at least as large as a cross-sectional surface of the narrow x-ray beam. The arrangement also includes a source grating arranged between the x-ray tube and the x-ray detector. The arrangement includes a defraction grating arranged between the source grating and the x-ray detector, and an absorption grating arranged between the defraction grating and the x-ray detector.
Abstract:
The present application is directed to an anode for an X-ray tube. The X-ray tube has an electron aperture through which electrons emitted from an electron source travel subject to substantially no electrical field and a target in a non-parallel relationship to the electron aperture and arranged to produce X-rays when electrons are incident upon a first side of the target, wherein the target further comprises a cooling channel located on a second side of the target. The cooling channel comprises a conduit having coolant contained therein. The coolant is at least one of water, oil, or refrigerant.
Abstract:
Various embodiments are described herein for nanostructure field emission cathode structures and methods of making these structures. These structures generally comprise an electrode field emitter comprising a resistive layer having a first surface, a connection pad having a first surface disposed adjacent to the first surface of the resistive layer, and a nanostructure element for emitting electrons in use, the nanostructure element being disposed adjacent to a second surface of the connection pad that is opposite the first surface of the connection pad. Some embodiments also include a coaxial gate electrode that is disposed about the nanostructure element.