Abstract:
The x-ray target assemblies have an oxide dispersion strengthened (ODS) refractory metal alloy substrate that is bonded to a carbon-containing heat sink. The x-ray target assemblies have excellent bonding between the substrate and the heat sink. The improved bonding is achieved by placing an oxide-free barrier layer between the ODS metal substrate and the heat sink. The oxide-free barrier layer minimizes or eliminates chemical reactions that would otherwise be possible between the dispersed oxides and the carbon-based heat sink during the manufacturing process. Preventing these undesired reactions while manufacturing the x-ray target assembly yields a device with improved bonding between the heat sink and the substrate, compared to devices manufactured without the barrier layer.
Abstract:
A target assembly for generating x-rays includes a target substrate, and an emissive coating attached to the target substrate, the emissive coating including a textured material including a plurality of granular protrusions arranged to increase gray body emissive characteristics of the target assembly above that of the target substrate.
Abstract:
A target for generating x-rays includes a target substrate, a target shaft attached to the target substrate, and a radiation emissive coating applied to at least one of the target substrate and the target shaft, wherein a center-of-gravity of the target is positioned between a front bearing assembly and a rear bearing assembly of an x-ray tube.
Abstract:
An x-ray tube has a cathode and an anode produced from a first material, the anode having a heat conductor element on the first side thereof facing away from the cathode. To improve the performance of the x-ray tube, the heat conductor element is composed of graphite doped with titanium having a heat conductivity of at least 500 W/mK.
Abstract:
An apparatus and method for applying an absorptive coating to a portion of the evacuated enclosure in an x-ray generating device is disclosed. The absorptive coating is applied to the inner surface of the evacuated enclosure to enhance its heat dissipation characteristics, which in turn assists in tube cooling during x-ray production. The absorptive coating is applied atop an intermediate bonding layer. Both the absorptive coating and the intermediate bonding layer are applied to the evacuated enclosure surface by electroplating processes. A plating apparatus comprising the evacuated enclosure portion, a plating fixture, and a base plate is used both to contain the electroplating solution during the plating process, as well as to facilitate its entry into and removal from the evacuated enclosure. A method of employing the plating apparatus to apply the intermediate bonding layer and the absorptive coating is also disclosed.
Abstract:
An x-ray tube has a cathode and an anode produced from a first material, the anode having a heat conductor element on the first side thereof facing away from the cathode. To improve the performance of the x-ray tube, the heat conductor element is produced from a material with a heat conductivity of at least 500 W/mK.
Abstract:
An x-ray tube target assembly 16 is provided. The assembly 16 includes a target disc element 18 having a target bore 22. A target shaft 20 transmits rotational drive to the target disc element 18. The target shaft 20 includes a plurality of axial adjustment slots 30 formed in an upper portion. The plurality of axial adjustment slots 30 are positioned around the target shaft 20 to form a plurality of partial circumferential ribs 36. The plurality of partial circumferential ribs 36 are brazed to the target bore 22.
Abstract:
An x-ray tube 10 is provided including an anode mounted to a rotatable shaft positioned within a center bore of a stem element, a bearing assembly positioned between the rotatable shaft and the stem element, and at least one liquid metal shunt in thermal communication with both the rotatable shaft and the stem element, located adjacent to the anode between the anode and the bearing assembly, and directing heat generated at the anode away from the bearing assembly by allowing heat to flow from the rotatable shaft into the stem element prior to heat reaching the bearing assembly.
Abstract:
A method of manufacturing an x-ray target by positioning an x-ray target having an alloy surface and a graphite surface in a sputtering chamber is disclosed. The x-ray target is then coated over the graphite surface with non-hydrogenated amorphous carbon.
Abstract:
The present invention relates to an oxide coating layer for improving the thermal emissivity of metallic X-ray tube anodes as well as improving the layer properties and effects displayed by the oxide coating. The oxide coating layer includes 1-20% by weight, and preferably, 4-7% by weight, of aluminum oxide. The layer additionally includes small proportions of other compounds and contains the oxides of the metals Ti and Zr and is applied to the x-ray anode by standard deposition processes. It is essential that the titanium dioxide content is less than 20% by weight of the oxide coating layer and the zirconium oxide content is greater than 60% by weight of the oxide coating layer. The coating layer may also include a stabilizing component, such as CaO. As a result, the deposition of such oxides or oxide mixtures is substantially better than hitherto known, and the anodes thus produced can be further processed to produce useable oxide layers without adverse effect to the important properties of layer adhesion and thermal emission coefficient.