Abstract:
An X-ray tube includes a cathode and an anode. The cathode is configured to generate an electron beam. The anode has at least one hole that faces the electron beam, the hole having sidewalls and a floor. The electron beam impinges on one or more of the sidewalls of the at least one hole so as to emit a first X-ray beam at angles that are not orthogonal to a surface of the anode. The electron beam also impinges on the floor of the at least one hole so as to emit a second X-ray beam, at least some of which is emitted at an angle that is orthogonal to the surface of the anode.
Abstract:
The present invention is directed toward an X-ray scanner that has an electron source and an anode. The anode has a target surface with a series of material areas spaced along it in a scanning direction. The material areas are formed from different materials. The electron source is arranged to direct electrons at a series of target areas of the target surface, in a predetermined order, so as to generate X-ray beams having different energy spectra.
Abstract:
This invention relates to high power X-ray sources, in particular to those equipped with a rotating X-ray anode capable of delivering a higher short time peak power than conventional rotating x-ray anodes. This invention can overcome the thermal limitation of peak power by allowing fast rotation of the anode and by introducing a lightweight material with high thermal conductivity in the region adjacent to the focal track material. The fast rotation can be provided by using sections of the rotating anode disk made of anisotropic high specific strength materials with high thermal stability that can be specifically adapted to the high stresses of anode operation. Uses include high speed image acquisition for X-ray imaging, for example, of moving objects in real-time such as in medical radiography.
Abstract:
An X-ray imaging system that generates a large amount of X-rays sufficient for X-ray imaging and collimates X-rays in a direction parallel to each other at high density. The X-ray imaging system includes an X-ray generating apparatus to generate and emit X-rays, a detector to detect the X-rays emitted from the X-ray generating apparatus, and at least one collimator disposed between the X-ray generating apparatus and the detector to prevent dispersion of the X-rays emitted from the X-ray generating apparatus.
Abstract:
According to one embodiment, there is provided an X-ray tube target. The X-ray tube target has a structure in which a carbon base material is bonded with an Mo base material or Mo alloy base material with a joint layer. The joint layer includes an MoNbTi diffusion phase, an NbTi alloy phase, an Nb-rich phase and a ZrNb alloy phase when the ratios of components in the joint layer are detected by EPMA.
Abstract:
The present invention is related to high power X-ray sources, in particular to those ones that are equipped with rotating X-ray anodes capable of delivering a much higher short time peak power than conventional rotating X-ray anodes according to the prior art. The herewith proposed design principle thereby aims at overcoming thermal limitation of peak power by allowing extremely fast rotation of the anode and by introducing a lightweight material with high thermal conductivity (2) in the region adjacent to the focal track material (4). The extremely fast rotation is enabled by providing sections of the rotary anode disk made of anisotropic high specific strength materials with high thermal stability (1, 3, 6) which will be specifically adapted to the high stresses building up when the anode is operated, as for example fiber-reinforced ceramic materials. An X-ray system equipped with a high peak power anode according to the present invention will be capable of high speed image acquisition with high resolution and high coverage. Such a high-speed rotary anode disk can advantageously be applied in X-ray tubes for material inspection or medical radiography, for X-ray imaging applications which are needed for acquiring image data of moving objects in real-time, such as e.g. in the scope of cardiac CT, or for any other X-ray imaging application that requires high-speed image data acquisition. According to a further exemplary embodiment, the invention is directed to a rotary anode disk divided into distinct anode segments (10a, 10b) with adjacent anode segments which may e.g. be limited to each other by straight radial (14a) or S-shaped slits (14b) ranging from the inner anode bulk (1) to the inner radial edge of the anode disk's outer frame section (3). Other exemplary embodiments of the present invention relate to a rotary anode disk structure design which comprises liquid metal conductors (16a) between the inner anode bulk (1) and a rotary shaft (12) needed for rotating the rotary anode disk about its rotational axis (5), said liquid metal conductors (16a) providing a liquid metal connection between the rotary anode and its rotary shaft (12), or to a rotary anode disk structure which comprises a sliding radial connection (17) and a flexible heat conductor (18) between the inner anode bulk (1) and the rotary shaft (12).
Abstract:
According to one embodiment, there is provided an X-ray tube target. The X-ray tube target has a structure in which a carbon base material is bonded with an Mo base material or Mo alloy base material with a joint layer. The joint layer includes an MoNbTi diffusion phase, an NbTi alloy phase, an Nb-rich phase and a ZrNb alloy phase when the ratios of components in the joint layer are detected by EPMA.
Abstract:
An X-ray generating device includes an electron-beam generator, a target assembly group, and an electron-beam focusing unit. The electron-beam generator generates electron beams. The target assembly group includes a plurality of target assemblies that are arranged along a straight line in a direction in which X-rays are output; each of the target assemblies includes a target and a supporting member; the target generates X-rays from one of the electron beams generated by the electron-beam generator; and the supporting member supports the target by being disposed adjacent thereto. The electron-beam focusing unit focuses the electron beams onto the targets included in the target assembly group so that X-rays are generated in each of the target assemblies and output along the straight line after passing through the target assemblies.
Abstract:
An apparatus for use in a radiation procedure includes a radiation filter having a first portion and a second portion, the first and the second portions forming a layer for filtering radiation impinging thereon, wherein the first portion is made from a first material having a first x-ray filtering characteristic, and the second portion is made from a second material having a second x-ray filtering characteristic. An apparatus for use in a radiation procedure includes a first target material, a second target material, and an accelerator for accelerating particles towards the first target material and the second target material to generate x-rays at a first energy level and a second energy level, respectively.
Abstract:
Disclosed are an X-ray target having a micro focus size and capable of producing X-rays of high intensity, and apparatuses using such an X-ray target. The X-ray target (1) has a structure in which a first cap layer (21), a target layer (22), and a second cap layer (23) are successively laminated, wherein the first and second cap layers (21 and 23) are each composed of a material which is lower in electron beam absorptivity than that of which the target layer (22) is composed. An X-ray generator using the X-ray target (1) can generate highly intense and nanofocus (several nm) X-rays (17). Using the X-ray generator, an X-ray microscope allows obtaining a high resolution transmission image, an X-ray diffraction apparatus allows obtaining an X-ray diffraction image of a very small area, and a fluorescent X-ray analysis apparatus allows making the fluorescent X-ray analysis of a minute area.