Abstract:
A radiation emitting target, a radiation generating device, and a radiography system are provided in which adhesion between a target layer and a diamond substrate is improved and stable radiation emitting properties are exhibited. A transmission type target includes a target layer, a carbon-containing region including sp2 bonds, and a diamond substrate that supports the target layer. The carbon-containing region is positioned between the target layer and the diamond substrate.
Abstract:
An anode for an X-ray tube can include one or more of an yttrium-oxide derivative, titanium diboride, boron carbide, titanium suboxide, reaction-bonded silicon carbide, and reaction-bonded silicon nitride. Upon collision with an anode, the kinetic energy of an electron beam in an X-ray tube is converted to high-frequency electromagnetic waves, i.e., X-rays. An anode from one or more of the above materials and a gradient distribution of conductive metals can reduce costs and/or weight, extend the life of the anode or associated components (e.g., bearings) and simultaneously provide a higher heat storage capacity as compared to traditional molybdenum and tungsten anodes.
Abstract:
A transmissive-type target includes a target layer, and a transmissive substrate configured to support the target layer. The transmissive substrate has a pair of surfaces facing each other and is formed of polycrystalline diamond. In the transmissive substrate, one of the pair of surfaces includes polycrystalline diamond having a first average crystal grain diameter which is smaller than a second average crystal grain diameter of polycrystalline diamond included on the other surface opposing thereto. The target layer is supported by any one of the pair of surfaces.
Abstract:
An x-ray anode for generating x-radiation includes a carrier body and a first emission layer and at least one second emission layer, which generate x-radiation when they are impinged by electrons. The emission layers are separated by an intermediate layer on one side of the carrier body and are arranged a distance apart in a central direction of the x-ray anode.
Abstract:
A method (100) creates a braze joint (58) between an anode plate (52) and a piece of graphite (56) of an x-ray tube (38). The method (100) includes receiving (102) the anode plate (52) and the piece of graphite (56). A barrier layer (66) and a braze layer (62) are arranged (104, 106, 108) between the anode plate (52) and the piece of graphite (56), where the barrier layer (66) is between the piece of graphite (56) and the brazing layer (62). The barrier layer (66) is heated (110) with the braze layer (62) to create the braze joint (58) between the anode plate (52) and the piece of graphite (56).
Abstract:
A transmission-type X-ray target includes a flat plate-shaped diamond substrate having a first surface and a second surface facing the first surface and a target layer that is located on the first surface. A residual stress of the first surface is lower than a residual stress of the second surface.
Abstract:
In one example, an x-ray target comprises a target track, a substrate, and an optional backing. The target track includes a base material and a grain growth inhibitor to reduce or prevent microstructure grain growth in the base material. The target track can be included as part of an x-ray tube anode, either of a rotary form or a stationary form.
Abstract:
In one example, an x-ray target comprises a substrate, a target core, and a target track. The substrate and target core are attached together utilizing a carbide layer and a braze layer.
Abstract:
This monochromatic X-ray source comprises a target in particular made from a material incorporating emitting ions comprising an element, the said atoms being excited by electron bombardment, essentially by the electrons located on the K layers of the said atoms. The target material is generally in the solid state and it is held together by means of structuring atoms representing one or more elements and bound to the emitting atoms, the said structuring atoms having an absorption coefficient equal to or lower than 2.3 μm−1 for the X-rays emitted by the emitting atoms.
Abstract:
A composite body for rotary anodes of X-ray tubes is made from graphite, a carbide-forming, high-melting metal component and a multi-layered intermediate layer. The first layer of the intermediate layer closest to the graphite is made up of a metal or an alloy thereof which does not form a carbide. Applied over the first layer are at least two double layers. Each double layer has one individual layer of at least one carbide-forming metal or at least one carbide thereof, and a second individual layer of a metal or an alloy thereof which does not form a carbide. Preferred carbide-forming metals are tungsten, tantalum, hafnium and niobium. Preferred metals which do not form carbides are rhenium and platinum. In a preferred embodiment, the composite body is a rotary anode for X-ray tubes, with a basic body made of graphite and a burning track made of tungsten or a tungsten-rhenium alloy applied directly to the intermediate layer.