Abstract:
The present invention relates to a method for producing a conductor structural element, comprising providing a rigid substrate, electrodepositing a copper coating on the rigid substrate, applying a conductor pattern structure to the copper coating, then possibly mounting components, laminating the substrate with at least one electrically insulating layer, detaching the rigid substrate, at least partially removing the remaining copper coating of the rigid substrate in such a way that the conductor pattern structure is exposed.
Abstract:
A process for manufacturing semiconductor packages is provided, that includes drilling blind apertures in a reconstituted wafer, adhering a dry film resist on the wafer over the apertures, and patterning the film to expose a space around each of the apertures. The apertures and spaces are then filled with conductive paste by wiping a quantity of the paste across a surface of the film so that paste is forced into the spaces and apertures. The spaces around the apertures define contact pads whose thickness is constrained by the thickness of the film, preferably to about 10 μm or less. To prevent paste from trapping air pockets in the apertures, the wiping process can be performed in a chamber from which much or all of the air has been evacuated. After curing the paste, the wafer is thinned from the back to expose the cured paste in the apertures.
Abstract:
A semiconductor device includes a first wafer having at least one first integrated-circuit chip and a first support layer surrounding the first integrated circuit chip. A first electrical-connection layer is placed on a frontside of the first wafer and includes a first electrical-connection network. A second wafer is placed on a frontside of the first electrical-connection layer. The second wafer includes at least one second integrated-circuit chip and a second support layer surrounding the second integrate circuit chip. The second integrated circuit chip has an active side facing the first electrical-connection layer, and one or more through-holes filled with a conductor forming electrical-connection vias. A second electrical-connection layer is placed on the backside of the second wafer and includes a second electrical-connection network.
Abstract:
An electronic package having a base structure; a layer stack formed over the base structure; and a component embedded at least partially within the base structure and/or within the layer stack. The layer stack has a decoupling layer structure, the decoupling layer structure with a decoupling material having a Young Modulus being smaller than 1 GPa.
Abstract:
A semiconductor package including a core substrate, a semiconductor chip in the core substrate and having chip pads, a redistribution wiring layer covering a lower surface of the core substrate and including redistribution wirings electrically connected to the chip pads and a pair of capacitor pads exposed from an outer surface of the redistribution wiring layer, conductive pastes on the capacitor pads, respectively, and a capacitor via the conductive pastes and having first and second outer electrodes on the capacitor pads, respectively, may be provided. Each of the capacitor pads includes a pad pattern exposed from the outer surface of the redistribution wiring layer, and at least one via pattern at a lower portion of the pad pattern and electrically connected to at least one of the redistribution wirings. The via pattern is eccentric by a distance from a center line of the pad pattern.
Abstract:
The present invention relates to a method for producing a conductor structural element, comprising providing a rigid substrate, electrodepositing a copper coating on the rigid substrate, applying a conductor pattern structure to the copper coating, then possibly mounting components, laminating the substrate with at least one electrically insulating layer, detaching the rigid substrate, at least partially removing the remaining copper coating of the rigid substrate in such a way that the conductor pattern structure is exposed.
Abstract:
A semiconductor device includes a first wafer having at least one first integrated-circuit chip and a first support layer surrounding the first integrated circuit chip. A first electrical-connection layer is placed on a frontside of the first wafer and includes a first electrical-connection network. A second wafer is placed on a frontside of the first electrical-connection layer. The second wafer includes at least one second integrated-circuit chip and a second support layer surrounding the second integrate circuit chip. The second integrated circuit chip has an active side facing the first electrical-connection layer, and one or more through-holes filled with a conductor forming electrical-connection vias. A second electrical-connection layer is placed on the backside of the second wafer and includes a second electrical-connection network.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.