Abstract:
An optical device including: a laser light emitting portion that emits laser light; a polygon mirror having a reflective surface that reflects the laser light, the polygon mirror being driven to rotate and deflecting the laser light emitted from the laser light emitting portion; a first lens through which the laser light reflected by the polygon mirror is transmitted, the first lens refracting the laser light; a second lens through which the laser light having passed through the first lens is transmitted, the second lens refracting the laser light; and an adjustment unit that adjusts at least one of a length of a first optical path between the polygon mirror and the first lens, and a length of a second optical path between the first lens and the second lens.
Abstract:
An image reading apparatus includes a scanning unit disposed in a box-shaped casing for scanning a stationary original in a sub-scanning direction to read the original; a supporting unit for supporting one side of the scanning unit in a main scanning direction and guiding the one side of the scanning unit in the sub-scanning direction; a driving source for moving the scanning unit in the sub-scanning direction; a drive transmitting unit for transmitting a drive of the driving source to the scanning unit; and first and second reinforcing plates attached to the casing along the sub-scanning direction for reinforcing the casing. The first reinforcing plate forms a guide unit for supporting the other side of the scanning unit in the main scanning direction and guiding the scanning unit in the sub-scanning direction. The driving source and the drive transmitting unit are fixed to the second reinforcing unit.
Abstract:
The present invention provides an image scanning module including a first unit, a second unit, and a third unit. The first unit having a light source is used for retrieving a first image. The second unit is used for generating a second image by focusing the first image. The third unit is used for generating an electric signal responsive to the second image. The first unit, the second unit, and the third unit are modules discrete from each other.
Abstract:
An optical reader reads draft picture information by guiding reflection light from the optically scanned draft onto the reader element. The optical reader embodiment is provided with the molded supporting member that integrally secures a plurality of blocks supporting the optical elements including a plurality of reflection mirrors that guide the reflection light onto the reader element, a focus lens that focuses the reflection light projected from these reflection mirrors onto the reader element, and the reader element, respectively. Spring clips are used to secure the reflection mirrors to corresponding blocks of the molded supporting member.
Abstract:
A system includes a laser scanner system. The system includes a scanner laser to generate an optical scanning beam. The system also includes a spindle assembly comprising a spindle that extends along an axis and reflects the optical scanning beam. The system also includes a beam detector to receive the reflected optical scanning beam from the single facet and to indicate when to generate a latent image corresponding to an image based on the optical scanning beam for a given scan operation. The system further includes a scan controller to control the scanner laser such that the optical scanning beam is reflected from only a single facet of the spindle during the given scan operation.
Abstract:
An optical module 100 includes an optical path unit 101 including a plurality of reflectors 104 for securing an optical path of reflected light from a manuscript, an image processing unit 102 including a reading device 105 which reads image information on the manuscript based on the reflected light from the manuscript entered via the optical path, and a connecting component 103 which connects the optical path unit 101 and the image processing unit 102 so that their positional relation will become a prescribed state.
Abstract:
An optical scanning device includes a plurality of converging lenses and a plurality of supporting members. Each supporting member supports a corresponding one of the converging lenses. Moreover, the converging lenses are arranged so as to be out of alignment with one another in a main-scanning direction and are arranged in a row in a sub-scanning direction in such a manner that no converging lens interferes with supporting members that support other converging lenses.
Abstract:
An optical device including: a laser light emitting portion that emits laser light; a polygon mirror having a reflective surface that reflects the laser light, the polygon mirror being driven to rotate and deflecting the laser light emitted from the laser light emitting portion; a first lens through which the laser light reflected by the polygon mirror is transmitted, the first lens refracting the laser light; a second lens through which the laser light having passed through the first lens is transmitted, the second lens refracting the laser light; and an adjustment unit that adjusts at least one of a length of a first optical path between the polygon mirror and the first lens, and a length of a second optical path between the first lens and the second lens.
Abstract:
A technique is provided which can improve optical characteristics by suppressing the occurrence of an error in attachment of a rotary deflector that deflects a light flux from a light source and scans it in a main scanning direction. There are provided a rotary deflector that deflects the light flux from the light source and scans it in the main scanning direction, an imaging optical system that images the light flux scanned by the rotary deflector onto a specified scanning object, a support part that supports the rotary deflector rotatably, and a positioning part that comes in contact with the support part at plural contact positions and positions the support part, in which a shortest distance between the plural contact positions in an optical axis direction of the imaging optical system is longer than a shortest distance between the plural contact positions in the main scanning direction.
Abstract:
An optical writing device that writes electrostatic latent images on an image carrier by irradiating and scanning the image carrier with an optical beam includes an optical element, a support housing configured to support members constituting the optical writing device, a pair of optical-element holding members opposing each other in a principal scanning direction and arranged in the support housing, and a displacing member configured to displace at least one of the pair of optical-element holding members relatively to the support housing on a plane perpendicular to the principal scanning direction. The optical-element holding member is made of a material having a coefficient of linear expansion smaller than that of the support housing.