Abstract:
A document reading apparatus includes a document positioning plate on which a document is placed, an image-forming unit configured to cause a light from the document to form an image, a reading unit configured to receive the light from the document which has passed through the image-forming unit, a supporting member for supporting the image-forming unit, a fixing member for fixing a reading element, and a frame member for holding the image-forming unit, the supporting member, the reading element and the fixing member.
Abstract:
A multi-functional device comprising an image forming apparatus to form a printing image and a scanner module to scan an image in a first scanning direction. The scanner module includes an illuminator to illuminate a light to a document mount, a sensor unit to read an image information of an object placed on the document mount, and an imaging lens which is disposed between the document mount and the sensor unit and focuses the light reflected from the object onto the sensor unit. The illuminator includes a light source to emit light, a light guiding unit which is lengthened in a second scanning direction, faces the document mount and changes a traveling path of the light emitted from the light source to illuminate the document mount, and a guide holder which comprises an installation part where the light guiding unit is installed, and a mounting part where the light source holder is mounted to provide the light source at least one side of the light guiding unit.
Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.
Abstract:
In a color marking assembly, a series of ROS units are aligned above a photoconductive surface. These units have inboard and outboard mounts connecting them to this assembly. The inboard mounts are attached to a first side of the ROS, and the outboard mounts are attached to a second side of the ROS unit. The inboard mount is an elongated bar extending beyond the height of the ROS unit. This elongated bar has hinged portions on both its top and bottom connections to the ROS unit. The outboard mount has a ball bearing or sphere configuration. This configuration and the inboard mount enable the ROS unit to be easily deskewed when required.
Abstract:
An optical scanning apparatus includes a plate member, having a rotation axis and a reflection surface, that deflects and scans a laser beam emitted from a light source by performing reciprocating-rotation around the rotation axis, an actuator configured to drive the plate member, an fθ-lens configured to focus the laser beam deflected by the plate member on a surface of a photosensitive drum, and an optical box configured to house the plate member, the actuator, and the fθ-lens. The actuator is provided nearer to a side of the optical box toward which the laser beam is reflected by the reflection surface than the reflection surface of the plate member is.
Abstract:
A technique is provided which can improve optical characteristics by suppressing the occurrence of an error in attachment of a rotary deflector that deflects a light flux from a light source and scans it in a main scanning direction. There are provided a rotary deflector that deflects the light flux from the light source and scans it in the main scanning direction, an imaging optical system that images the light flux scanned by the rotary deflector onto a specified scanning object, a support part that supports the rotary deflector rotatably, and a positioning part that comes in contact with the support part at plural contact positions and positions the support part, in which a shortest distance between the plural contact positions in an optical axis direction of the imaging optical system is longer than a shortest distance between the plural contact positions in the main scanning direction.
Abstract:
An optical scanning apparatus constructed to dispose optical elements guiding light beams to a deflector such as a rotary polygon mirror at a low cost with high accuracy, includes a first light source, a second light source, a deflector, a first optical member provided on a first optical path between the first light source and the deflector, a second optical member provided on a second optical path between the second light source and the deflector, and one wall holding both of a side surface of the first optical member and a side surface of the second optical member.
Abstract:
A contact image sensor (CIS) for scanning a document is disclosed. The CIS includes a housing having an opening, a first slide and a second slide, a light guide installed on the housing through the opening and the first slide for scanning the document and generating a reflective image, a rod lens installed on the housing through the opening and the second slide for receiving the reflective image and generating a focused image, a PCB installed on the housing and having a sensing array for transforming the focused image into an image signal, and a spring cover fixed on the opening for fixing the light guide and the rod lens in the housing to form the CIS.
Abstract:
An image sensor including: light guides for irradiating light onto an irradiated object; a lens that focuses reflected light that was reflected by the irradiated object; a sensor that receives the reflected light that was focused by the lens; and a housing. The housing houses or holds the light guides, the lens, and the sensor, and is formed by integrating a housing metal portion and a housing resin portion.
Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.