Abstract:
An image reading device includes: a line illuminator for irradiating a document G; an erecting equal-magnification lens array operative to condense light reflected by the document G and including a stack of a first lens array plate and a second lens array plate each provided with an arrangement of a plurality of lenses on both sides thereof; a line image sensor operative to receive the light condensed by the erecting equal-magnification lens array; a housing for securing the line illuminator, the erecting equal-magnification lens array, and the line image sensor in their places; and a first light shielding member, a second light shielding member, and a third light shielding member operative to prevent light not contributing to imaging from entering the lenses. The first light shielding member, the second light shielding member, and the third light shielding member are formed as one piece with the main part of the housing.
Abstract:
An LED module includes first through third LED chips and two Zener diodes for preventing excessive voltage application to the first and the second LED chips. A first lead includes a mount portion on which the first through third LED chips and the two Zener diodes are mounted. A resin package covers part of the first lead and includes an opening for exposing the three LED chips and two Zener diodes. A single insulating layer bonds the first and second LED chips to the first lead. A single conductive layer bonds the third LED chip and two Zener diodes to the first lead. The Zener diodes are arranged between the first, second LED chips and the third LED chip.
Abstract:
A data conversion system for converting data outputted from an information processor into data in a different format in real time while preventing any defect of an image such as frame missing or frame repetition of moving image data by synchronizing data transfer with converted data output. One of first and second nodes on an IEEE1394 bus functions as a cycle master, and first data is transferred from the first node to the second node in synchronism with a cycle start packet outputted from the cycle master. Second data generated by converting the first data by the second node is outputted in synchronism with a reference signal inputted from outside. The system comprises an external synchronizing signal receiving section provided at least in one of the first and second nodes and adapted to receive the reference signal inputted from outside and a synchronism control section for synchronizing the frequency of a cycle start packet outputted from the cycle master with the reference signal received by the external synchronizing signal receiving section.
Abstract:
A scanning apparatus for preventing defocus aberration is provided. The scanning apparatus includes a flatbed scanning portion and a scanning module. The flatbed scanning portion includes a glass platform. The scanning module includes a scanning module case, a light source, multiple reflective mirrors, a lens, an optical sensing element, a printed circuit board and a metallic post. The metallic post is interconnected between the scanning module case and the printed circuit board. The printed circuit board is not in direct contact with the scanning module case so as to prevent defocus aberration resulting from thermal expansion.
Abstract:
A scan bar for scanning a media sheet in an image scanning device and a method for scanning the media sheet in the image scanning device are disclosed. The scan bar comprises a sensor arrangement and a lens arrangement. The sensor arrangement comprises a first sensor region and a second sensor region. Light reflected from the media sheet is focused by the lens arrangement onto the sensor arrangement. Each of the first sensor region and the second sensor region is capable of generating image data corresponding to the media sheet from the focused light received from the lens arrangement for scanning the media sheet. The image data generated by the first sensor region is of relatively higher resolution than image data generated by the second sensor region.
Abstract:
An image reading device includes: a line illuminator for irradiating a document G; an erecting equal-magnification lens array operative to condense light reflected by the document G and including a stack of a first lens array plate and a second lens array plate each provided with an arrangement of a plurality of lenses on both sides thereof; a line image sensor operative to receive the light condensed by the erecting equal-magnification lens array; a housing for securing the line illuminator, the erecting equal-magnification lens array, and the line image sensor in their places; and a first light shielding member, a second light shielding member, and a third light shielding member operative to prevent light not contributing to imaging from entering the lenses. The first light shielding member, the second light shielding member, and the third light shielding member are formed as one piece with the main part of the housing.
Abstract:
An image sensor module includes a light source, a light guide elongated in a first direction, a reflector covering the guide, and a light receiver for linear light reflected on a reading target in a second direction perpendicular to the first direction. The guide includes an incident surface for entering light from the light source, a reflecting portion for reflecting, in a direction crossing the first direction, the light from the incident surface, and a surface for emitting light from the reflecting portion as linear light elongated in the first direction. The reflector has an opening and an inclined surface. The opening extends in the first direction to pass the light reflected by the target. The inclined surface, at an end of the opening in the first direction, has a normal which is non-parallel to the first direction and a third direction perpendicular to the first and second directions.
Abstract:
An optical reader which reads image information on an original document by moving to the original document includes an illumination unit having at least one light source arranged on a substrate and illuminating the original document, a plurality of mirrors reflecting reflection light from the original document, a focusing lens focusing the reflection light from the original document reflected by the mirrors, and a photoelectric conversion element arranged in a focusing position of the focusing lens, a normal direction of an emission surface of the light source and a normal direction of a light-receiving surface of the photoelectric conversion element are the same direction, an original document reading position is set near an end portion of the optical reader in the normal direction.
Abstract:
To present a moving picture processing device having a user interface very easy to use when selecting part of moving pictures from multiple moving pictures. The moving picture processing device comprises a moving picture display unit for displaying whole or part of plural stored moving pictures sequentially, an input accepting unit for accepting an input for display of moving picture, a moving picture menu compiling unit for compiling a menu of moving pictures displayed when the input accepting unit accepts the input, and a menu display unit for displaying a menu of moving pictures compiled by the moving picture menu compiling unit.
Abstract:
An image sensor and a manufacturing method thereof are provided, so that the warp or the distortion is not caused even if there is the thermal expansion difference or the thermal contraction difference in the longitudinal direction between the linear illuminating device and the frame. The image sensor comprises a linear illuminating device for illuminating an original; a light-receiving element array for receiving reflected light from the original; a lens array for focusing the original on the light-receiving element array; a frame for containing the linear illuminating device, the lens array, and the light-receiving element array; and a resilient retaining portion for pressing the linear illuminating device, which is mounted in the frame, into the frame.