Abstract:
An image reading apparatus includes: a contact glass setting a manuscript thereon; an image sensor extending in a first direction and having a reading surface which faces the contact glass for reading an image from the manuscript on the contact glass; a rail member extending inside the apparatus main body in a second direction perpendicular to the first direction; a carriage having a sensor container to contain the image sensor, a taper end portion formed in an end portion in the first direction to become smaller in height toward the end side, and an opening formed in the bottom of the sensor container on the taper end portion side; a biased portion adjacent to the reading surface of the image sensor in the second direction; and a biasing member biasing the image sensor toward the contact glass via the biased portion.
Abstract:
A development device includes an imaging lens and light shielding walls. The imaging lens includes a body part having a constant diameter and both end parts arranged at both ends in an optical axial direction having diameters larger than the body part to capture a reflected light from a document onto an imaging part. The light shielding walls has a space with an interval larger than the diameter of the body part and smaller than the diameters of the both end parts, allowing the body part of the imaging lens to be arranged in the space, and shielding a light in the optical axial direction.
Abstract:
An image sensor and a manufacturing method thereof are provided, so that the warp or the distortion is not caused even if there is the thermal expansion difference or the thermal contraction difference in the longitudinal direction between the linear illuminating device and the frame. The image sensor comprises a linear illuminating device for illuminating an original; a light-receiving element array for receiving reflected light from the original; a lens array for focusing the original on the light-receiving element array; a frame for containing the linear illuminating device, the lens array, and the light-receiving element array; and a resilient retaining portion for pressing the linear illuminating device, which is mounted in the frame, into the frame.
Abstract:
An image reading device capable of correctly reading an image on a document is provided without the need to increase the size of an upper cover, etc. of the device. A CIS (Contact Image Sensor) is supported by holders and support shafts to be movable toward the upper cover (rib) and is biased toward the rib by compression springs. In this configuration, the rib for holding the document is not required to be installed as a movable component and there is no need to provide a space for allowing the rib to move or providing the upper cover with a mechanism for allowing the rib to move, which can avoid the need to increase the size of the upper cover.
Abstract:
A lens module includes a non-cylinder lens and a clamping apparatus. The clamping apparatus includes a base, two side parts, and a top part. Two side parts are disposed on two ends of the base to form a containing trough for holding the lens. One end of the top part is connected to one side part and the other end is fixed on the other side part. Two screw holes on the top part allow two adjusting screws to be screwed into for pressing the lens. Two elastic devices provide the elasticity between the lens and the base and the relative height of two sides of the lens is adjusted by turning the two adjusting screws.
Abstract:
An image reading apparatus includes: a contact glass setting a manuscript thereon; an image sensor extending in a first direction and having a reading surface which faces the contact glass for reading an image from the manuscript on the contact glass; a rail member extending inside the apparatus main body in a second direction perpendicular to the first direction; a carriage having a sensor container to contain the image sensor, a taper end portion formed in an end portion in the first direction to become smaller in height toward the end side, and an opening formed in the bottom of the sensor container on the taper end portion side; a biased portion adjacent to the reading surface of the image sensor in the second direction; and a biasing member biasing the image sensor toward the contact glass via the biased portion.
Abstract:
An image reading apparatus includes: a contact glass setting a manuscript thereon; an image sensor extending in a first direction and having a reading surface which faces the contact glass for reading an image from the manuscript on the contact glass; a rail member extending inside the apparatus main body in a second direction perpendicular to the first direction; a carriage having a sensor container to contain the image sensor, a taper end portion formed in an end portion in the first direction to become smaller in height toward the end side, and an opening formed in the bottom of the sensor container on the taper end portion side; a biased portion adjacent to the reading surface of the image sensor in the second direction; and a biasing member biasing the image sensor toward the contact glass via the biased portion.
Abstract:
An image reading apparatus includes: a contact glass setting a manuscript thereon; an image sensor extending in a first direction and having a reading surface which faces the contact glass for reading an image from the manuscript on the contact glass; a rail member extending inside the apparatus main body in a second direction perpendicular to the first direction; a carriage having a sensor container to contain the image sensor, a taper end portion formed in an end portion in the first direction to become smaller in height toward the end side, and an opening formed in the bottom of the sensor container on the taper end portion side; a biased portion adjacent to the reading surface of the image sensor in the second direction; and a biasing member biasing the image sensor toward the contact glass via the biased portion.
Abstract:
An optical scanner includes an optical housing, which houses a light source, an aperture stop, a condensing lens and a rotary deflector, light from the light source entering into the rotary deflector via the aperture stop and the condensing lens, and the light deflected by the rotary deflector scanning a target to be irradiated, a fastener, which fastens the condensing lens to the optical housing, and a fastener attachment portion to which the fastener is attached, the fastener attachment portion being disposed in a downstream side of the condensing lens in a traveling direction of the light in the housing.
Abstract:
An image reading device capable of correctly reading an image on a document is provided without the need to increase the size of an upper cover, etc. of the device. A CIS (Contact Image Sensor) is supported by holders and support shafts to be movable toward the upper cover (rib) and is biased toward the rib by compression springs. In this configuration, the rib for holding the document is not required to be installed as a movable component and there is no need to provide a space for allowing the rib to move or providing the upper cover with a mechanism for allowing the rib to move, which can avoid the need to increase the size of the upper cover.